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Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot fl owers, 
have been fundamental in advancing the structural and molecular understanding of fl ower development. The main pro-
cesses and stages of Arabidopsis fl ower development are summarized to provide a framework in which to interpret the 
detailed molecular genetic studies of genes assigned functions during fl ower development and is extended to recent 
genomics studies uncovering the key regulatory modules involved. Computational models have been used to study 
the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis infl ores-
cence meristem and specifi cation of the primordial cell types during early stages of fl ower development. This includes 
the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dy-
namic gene regulatory network this module has been shown to converge to stable multigenic profi les that depend upon 
the overall network topology and are thus robust, which can explain the canalization of fl ower organ determination and 
the overall conservation of the basic fl ower plan among eudicots. Comparative and evolutionary approaches derived 
from Arabidopsis studies pave the way to studying the molecular basis of diverse fl oral morphologies. 

1. INTRODUCTION: WHEN DID THE FLOWER EVOLVE?

The fl ower is the most complex structure of plants. Flowers distin-
guish the most recently diverged plant lineage, the angiosperms 
or fl owering plants, from the other land plants (Figure 1). Embryo-
phytes originated approximately 450 million years before present 
(MYBP) and have as distinctive features a thick cuticle resistant 
to desiccation, sporopollenin, pores or true stomata that aid in 
gas exchange, a glycolate oxidase system that improves carbon 
fi xation at high oxygen tensions, and importantly, distinctive mul-
ticellular diploid (sporophytic) and haploid (gametophytic) stages 
within their life cycles (Judd et al., 2002). The major extant land 
plant lineages are Bryophytes (Liverworts, Hornworts and Moss-
es), which do not have a vascular system, and Tracheophytes, 
vascular plants. Within the large latter group, Lycophytes, ferns, 
and seed bearing plants (Spermatophytes) can be distinguished. 

The Spermatophyte group has been further divided into Gymno-
sperms (originating 380-325 MYBP) and Angiosperms. Accord-
ing to the fossil record, fl ower-like structures originated 160-147 
MYBP (Frohlich, 2006). A general trend within land plant evolution 
is the appearance of heterospory: the existence of a megaga-
metophyte, including the female gametes, and a microgameto-
phyte, including the male gametes, a progressive reduction in 
gametophyte size (sexual reproductive structures), and within 
the seed plants, the presence of a diploid embryo. While these 
characteristics are shared among both extant and extinct seed 
plant lineages, the defi ning features of the angiosperm fl ower are: 
(1) a closed carpel bearing the ovules, which are each generally 
comprised of two integuments and (2) a nucellus that contains the 
embryo sac within which, after double fertilization, a diploid em-
bryo and a triploid endosperm (nutritional tissue for the embryo) 
will develop to form a seed (Judd et al., 2002). Another character-
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istic of angiosperms is true hermaphroditism (Judd et al., 2002; 
Frohlich, 2006). 

Flower structure has been studied in a variety of ways. Studies 
of the natural history and evolutionary biology of fl owers have em-
phasized understanding the ultimate (evolutionary) causes of the 
wide range of variants such as color, symmetry, meristic arrange-
ments (e.g. fl ower organ number), size, pollination syndrome, etc. 
Other studies have addressed the cellular, tissue type, morpho-
logical and physical factors that can account for both the pheno-
typic plasticity and developmental constraints in fl ower form (for 
a review of the developmental framework of angiosperm mor-
phology, see Endress, 2006). A different approach fl ourished in 
the late 1980s and early 1990s, the molecular genetics of fl ower 
development in two model eudicot species: Arabidopsis thaliana 
and Antirrhinum majus (see reviews in: Jack, 2004; Kaufmann et 
al., 2005; Krizek and Fletcher, 2005; Theissen and Melzer, 2007). 

Genetic studies of fl oral homeotic mutants in both plant spe-
cies yielded the now classic combinatorial ABC developmental 

model for fl oral organ determination (Bowman et al., 1989; Coen 
and Meyerowitz, 1991). While much work has been and continues 
to be done in Antirrhinum and other eudicot species, including 
Petunia hybrida, the genomic and life-cycle characteristics of Ara-
bidopsis make it the preferred experimental system for in-depth 
studies on the molecular components underlying cell differentia-
tion and morphogenesis during fl ower development.

The basic fl oral architecture is mostly conserved among the 
so-called core eudicots, that make up over 73% of extant fl ower-
ing plants (Drinnan et al., 1994) including Arabidopsis. Flowers 
within this group generally have four concentric whorls of organs 
that are specifi ed, from the outside to the center of the fl ower, in 
the sequence: sepals, petals, stamens, and carpels. Arabidopsis
has this typical fl oral architecture. An interesting exception to the 
conserved fl oral ground plan of eudicots is found in a Mexican 
rainforest monocotyledon, Lacandonia schismatica (Triuridaceae), 
which bears central stamens surrounded by carpels (Martínez and 
Ramos, 1989; Vergara-Silva et al., 2003; Ambrose et al., 2006). 
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Figure 1. Phylogenetic context of Arabidopsis thaliana: Evolutionary history of land plants. 

Phylogenetic tree of land plant evolution with some speciation events shown as colored nodes. White node, origin of land plants; light blue node, origin of 
vascular plants; blue node, origin of seed plants; dark blue node, origin of fl owering plants. Here, Chara spp. from the green algae order Charales is the 
outgroup, since it has been used to root several recent molecular land plant phylogenies. The topology of this tree is based on studies by Soltis et al. (1999) 
and Nickrent et al. (2000). Time references in million years before present (MYBP) were taken from Judd et al. (2002). 
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Even though the basic fl oral architecture is overall conserved 
among core eudicots, variation in the symmetry and size of fl ow-
ers, the number of whorls of each organ type, the number of or-
gans per whorl, and their arrangement, size, shape and color is 
common (e.g., Judd et al., 2002). 

The overall conservation of the fl ower plan suggests that ro-
bust gene regulatory network (GRN) modules controlling the ba-
sic features of fl ower development were established early in the 
evolution of angiosperms and have persisted in the great major-
ity of lineages throughout 140 million years of fl ower evolution. 

Recent integrated approaches to study the concerted action of 
the molecular components in fl ower development (Mendoza and 
Alvarez-Buylla, 1998; Espinosa-Soto et al., 2004), have led to 
a hypothesis that helps explain such robustness and conserva-
tion at the level of the GRN underlying fl oral organ specifi cation. 
However structural (e.g., mechanical) constraints could also be 
involved in conserving fl oral architecture (see section 4). Ap-
proaches that integrate genetic and structural aspects of fl owers 
should be pursued further to understand fl ower development in 
Arabidopsis and other angiosperms.
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Figure 2. Schematic representation of the shoot apical meristem (SAM): the infl orescence shoot apical meristem and fl oral meristem.

(A) Diagram outlining the geometry of the infl orescence shoot apical meristem (IM) and fl ower meristem (FM) during the fi rst stages of development of 
the latter. On the fl ank of the IM a fi rst bulge that corresponds to the rudimentary bract (Br) appears. In its axil, a second bulge forms and this continues to 
grow engulfi ng the fi rst one and forming the FM proper. Theses stages of FM development correspond to P2 and P3 according to Reddy et al. (2004). The 
arrow and arrowhead indicate the fi rst and second visible grooves respectively (see section 2.3 for further detail).
(B) Three distinctive zones make up the IM: the central zone (CZ) which contains the stem cells; the peripheral zone (PZ) on the fl anks of the CZ that 
gives rise to the bract and fl oral primordia; and the rib zone (RZ) underneath the CZ that yields stem tissue. Three cell layers are distinguished: L1 and L2 
layers constitute the tunica and include portions of both the CZ and the PZ. The rest of the cells form the L3 layer or corpus. In L1 and L2, cell divisions 
are anticlinal, while in L3 they occur in all directions (arrows, direction of cell division). The structure is maintained in the FM. 
(C) Schematic representation of the boundary zones (blue lines) and axes of polarity during fl oral development with the differentiation of sepals (se) from 
the fl oral primordium illustrated.
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2. STRUCTURAL ASPECTS OF ARABIDOPSIS FLOWER 
DEVELOPMENT
In this section, we provide a summary of structural features of 
Arabidopsis fl ower development. This is essential background to 
the molecular genetics reviewed in section 3. 

2.1 Structural Organization of the Infl orescence Meristem 
and Origin of the Flower Meristem

During the vegetative phase of the Arabidopsis life cycle, the 
shoot apical meristem (SAM) produces leaves on its fl anks and 
on transition to fl owering, the shoot bolts and the SAM becomes 
the infl orescence shoot apical meristem (IM). On bolting, some of 
the pre-existing leaf primordia become cauline leaves subtend-
ing lateral infl orescence shoots (paraclades) and the shoot apex 
starts to produce fl owers (Hempel and Feldman, 1995). A primary 
IM produces lateral meristems that may go on to produce fl owers 
or secondary infl orescences. Arabidopsis infl orescences are sub-
tended by fully developed bracts, but fl owers only by rudimentary 
ones. It is generally said that the IM generates the fl oral meri-
stems (FM) on its fl anks, but to be more precise, Arabidopsis FM 
are formed in the axils of the rudimentary bracts (Figure 2A; Long 
and Barton 2000; Hepworth et al., 2006; Kwiatkowska, 2006; re-
viewed in Kwiatkowska, 2008). 

The SAM of the Arabidopsis infl orescence consists of a small 
dome of cells organized into different regions (Figure 2B) with 
different gene expression profi les (see section 4.1), cellular 
behaviors and structures. The tunica at the SAM surface and 
corpus are distinguished on the basis of cell division planes. 
In Arabidopsis, the tunica consists of two clonally distinct cell 
layers called L1 and L2 (Vaughan, 1952; Steeves and Sussex, 
1989). Cell divisions within these meristem layers are exclusive-
ly anticlinal and the new cell walls are formed perpendicular to 
the surface of the meristem. The progeny of cells in the L1 will 
therefore remain in this same layer within the meristem similar 
to the underlying L2 progeny. Since outside the meristem the L1 
derived cells continue to divide only anticlinally the L1 eventually 
gives rise to epidermal cells. The cells originating from L2 also 
divide periclinally (outside the SAM) and contribute for example 
to the leaf mesophyll or stem ground tissue formation during or-
ganogenesis. This is also the germ line in the angiosperm SAM 
(Ruth et al., 1985, Klekowski, 1988; Kwiatkowska, 2008). Below 
the tunica, cell divisions are both anticlinal and periclinal. This 
region of the SAM is the corpus or L3 from which the innermost 
tissues, like vascular tissues, are formed (Figure 2B; Brand et 
al., 2001).

The SAM is also organized into three different cytohistologi-
cal zones each with characteristic cytoplasmic densities and cell 
division rates: the central zone (CZ), the peripheral zone (PZ) sur-
rounding the CZ and the rib zone (RZ) underneath the CZ (Figure 
2B; Bowman, 1994; Bowman and Eshed, 2000). 

Flower primordia are derived from the PZ of the IM and are ini-
tiated from a block of four so-called founder cells (Bossinger and 
Smyth, 1996; Reddy et al., 2004). This estimate was based on 
sector boundary analysis. However, using a non-invasive replica 
method and a 3-D reconstruction algorithm, Kwiatkowska (2006; 
2008) argues that more cells are assigned to the fl ower primor-
dium, and this is consistent with the observations by Grandjean 

et al. (2004). The difference could be due to the fact that not all 
of the cells estimated to be involved in the latter approaches are 
incorporated into the fl ower meristem proper. Some of them may 
form a part of the subtending rudimentary bract (Figure 2A; see 
next section for further discussion). 

The fi rst cells produced by the RZ following the transition to 
fl owering are rectangular with their long axis perpendicular to the 
major axis of the stem, but the subsequent elongation of these 
cells reverses this situation (Vaughan, 1955). The RZ gives rise 
to stem tissue. The CZ encompasses the reservoir of stem cells 
that divide less frequently than cells at the periphery (Grandjean 
et al., 2004; Reddy et al., 2004). The CZ maintains itself and 
yields daughter cells that form both the PZ and RZ (Bowman and 
Eshed, 2000). Fifteen stages of Arabidopsis fl ower development 
have been distinguished (Smyth et al., 1990). The fi rst stages of 
fl ower meristem development are: stage 1, when a fl ower buttress 
arises, stage 2 when the fl ower meristem is formed and stage 3 
when sepal primordia appear. Recently researchers have been 
able to study early fl ower meristem development in greater detail 
(Reddy et al., 2004; Kwiatkowska, 2006; reviewed by Kwiatkows-
ka, 2008) and have proposed subdividing stage 1 (see section 
2.3). 

2.2 Floral Organ Primordia

Once a fl ower primordium is initiated, the geometry changes and 
a rapid and coordinated burst of cell expansion and division oc-
curs in three dimensions generating a concentric group of cells 
as an almost spherical fl ower primordium, from which all fl oral 
tissues are derived (Bossinger and Smyth, 1996; Reddy et al., 
2004; Kwiatkowska, 2006). Jenik and Irish (2000) found that the 
regulation of cell divisions during early and late stages of fl ower 
development seems to depend upon different mechanisms. Early 
in fl ower development, when the fl oral meristem of Arabidopsis
is divided into four concentric rings (each with a characteristic 
multigenic expression profi le; see section 3.3), cell division pat-
terns depend upon the cell’s radial position in the fl oral meristem, 
and not on the future identity of the fl oral organ to be formed in 
each ring. After stage 6, during organogenesis, the ABC homeo-
tic genes (see section 3.3) seem to control the rate and orienta-
tion of cell divisions. As a result, the continuity of the concentric 
rings is broken giving distinct fl oral organ primordia within each 
whorl, then cells subdifferentiate into distinct types within each or-
gan. The initiation and identity of fl oral organs are also regulated 
by different and largely independent molecular modules. This is 
suggested, for example, by the fact that conversion of petals into 
sepal-like organs in mutant plants does not alter the number of 
cells involved in their initiation (Crone and Lord, 1994; Bossinger 
and Smyth, 1996). 

Tissues of fl oral organs are organized according to coordinat-
ed patterns and rates of cell division in the different cell layers of 
the meristem that dynamically acquire distinct fates. Clonal analy-
sis shows that L1 contributes to the epidermis, the stigma, part 
of the transmitting tract and the integument of the ovules, while 
L2 and L3 contribute to the mesophyll and other internal tissues 
(Jenik and Irish, 2000).

Sector boundary analysis of surface cells has shown that se-
pals and carpels are initiated from eight cells, stamens from four 
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cells, and petals from two cells (Bossinger and Smyth, 1996). 
Each organ primordium arises as a set of cells separated by 
boundary regions of slow-dividing cells (Figure 2C and section 
3.4.2; Breuil-Broyer et al., 2004). Flower development ends when 
mature organs are formed and all the fl ower meristem cells are 
used up (Takeda et al., 2004; Krizek and Fletcher, 2005). 

2.3 Stages of Flower Development

We provide an illustrated description of 20 states of fl oral develop-
ment and fruit formation (Figures 2-7), mostly based on Bowman 
(1994), Smyth et al. (1990), Ferrándiz et al. (1999) and Roeder 
and Yanofsky (2006), with updates and substages as proposed 
by Long and Barton (2000), Reddy et al., 2004; Hepworth et al. 
(2006), Kwiatkowska (2006) and Kwiatkowska (2008).

STAGE 1: The fi rst sign of fl ower primordium formation is the 
bulging of the peripheral surface of the IM in a lateral direction. 
This stage was referred to as P1 by Reddy et al. (2004). It is hy-
pothesized that a lateral protrusion formed during bulging is a rudi-
mentary bract (Figure 2A; Kwiatkowska, 2006). At this early stage, 
growth is fast and strongly anisotropic, with maximal growth in a 

meridional (i.e. radial when viewed from the top of the meristem) 
direction (Kwiatkowska, 2006) eventually leading to formation of a 
shallow crease, which corresponds to the fi rst visible groove and 
to the P2 stage (according to Reddy et al., 2004) of fl ower devel-
opment (Figure 2A). This shallow crease corresponds to the axil of 
the putative rudimentary bract (Kwiatkowska, 2006, 2008). Soon 
after the bract is formed, another bulge occurs in its axil in an 
upward direction. This second bulging corresponds to the forma-
tion of a fl ower primordium proper and to stage P3 according to 
Reddy et al. (2004). This stage corresponds to stage 2 according 
to Smyth et al. (1990). Hence, during early stages of fl ower devel-
opment in Arabidopsis, two types of primordia (bract and fl ower 
primordium proper) and organ boundaries are observed. The fi rst 
boundary is the adaxial boundary of the rudimentary bract, while 
the second is the boundary between the IM and the fl ower primor-
dium proper (Figure 2A). The expression patterns of several genes 
confi rm the developmental stages distinguished here (see more 
data on gene expression in the next section). 

A signifi cant increase in mitotic activity is observed upon for-
mation of the primordium. The mitotic activity can be estimated as 
the increase in the number of cells per 24 h or the accompanying 
area growth rates on the condition that the mean cell size does 
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Figure 3. Summary of the 20 stages of fl ower development. 

Schematic representation of developmental stages of Arabidopsis fl owers. Briefl y, the fl ower primordium is formed at stages 1 and 2. At stage 3, sepal 
primordia are already visible and continue growing until they enclose the fl ower meristem (from stage 4 to 6). Meanwhile, at stage 5, petal and stamen 
primordia are beginning to be visible, and the gynoecium starts to form (stage 6). Organ development continues and by stage 9, stigmatic papillae arise 
at the top of the gynoecium. At stage 12, petals are similar in length to stamens. Anthesis occurs at stage 13, fertilization occurs, and the fl ower opens at 
stage 14. Siliques reach their maximum size and are green by stage 17, then they loose water and turn yellow (stage 18) until valves separate from dry 
siliques (stage 19) and seeds fall (stage 20). Floral meristems (FM), pink; sepals, green; petals, bright pink; stamens, blue; gynoecia, yellow; ovules, dark 
green; seeds orange and brown. Duration of each stage in hours (h) is given under the fi gures (from Smyth et al., 1990). 
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Figure 4. Stages 1 to 6 of Arabidopsis fl ower development. 

(A) and (B) Infl orescence shoot apical meristem (IM) and fl oral meristem (FM) at stage 1 and 2 as indicated.
(C) and (D) Stage 3 FM showing abaxial (ab) and adaxial (ad) sepals (se). 
(E) At stage 4, lateral sepals (l) shown growing perpendicularly to the abaxial and adaxial ones. 
(F) and (G) At stage 5, stamen primordia are visible (arrows) and sepals almost cover the rest of the meristem. 
(H) Flower bud where sepals are covering the stamens and the gynoecium primordium. 
(I) Section through a stage-6 fl ower primordium where the gynoecium (g), stamens (st), and sepals (se) are apparent. 
Pictures are scanning electron micrographs (SEM), except (D), (G) and (I) which are optical images of histological sections. All pictures are of Columbia-0 
wild-type plants. 

not increase (Grandjean et al., 2004; Kwiatkowska, 2006; Reddy 
et al., 2004). During these early stages of fl ower development, 
periclinal cell divisions occur in the corpus while L1 and L2 cells 
only divide anticlinally (Vaughan, 1955). Hence, the two-layered 
tunica organization is maintained in the fl ower meristem, but all of 
its cells are mitotically active.

STAGE 2: During this stage, the hemispherical primordium 
continues to grow forming almost a right angle with the surface 
of the SAM, which itself lengthens and widens rebuilding the por-
tion of the periphery that has been used for primordium forma-
tion (Figures 3 and 4A-B). At this stage the fl ower primordium 

becomes clearly delimited from the IM, and starts to grow larger 
very quickly in all directions (Figures 3 and 4A-B; Reddy et al., 
2004; Kwiatkowska, 2006).

STAGE 3: This stage begins when sepal primordia become vis-
ible. By now the fl ower primordium is 30-35 μm in diameter and is 
becoming stalked with an incipient pedicel. It has also started to 
grow vertically. The two lateral (l) sepal primordia appear fi rst, but 
are soon outgrown by the abaxial (ab) then the adaxial (ad) sepal 
primordia. Sepal primordia arise initially as ridges that lengthen 
and curve inwards until they begin to overtop the remaining dome-
shaped portion of the fl ower primordium (Figures 3 and 4C-D).
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STAGE 4: During this stage, the elongation of the pedicel con-
tinues concurrently with an increase in the diameter of the devel-
oping fl ower primordium to 65-70 μm. The medial sepal primordia 
have already partly overtopped the remaining fl oral meristem 
(Figure 4E).

STAGE 5: This stage is when the petal and stamen primordia 
become visible. Primordia of the four medial (long) stamens are 
fi rst seen as wide outgrowths on the fl anks of the central dome 
of the FM. The four petal primordia that arise between the se-
pals close to their base are just visible during this stage. The two 
lateral (short) stamens develop from primordia that appear later 
during this stage (Figures 3 and 4F-G).

STAGE 6: The sepals grow to completely cover the fl oral bud 
and the primordia of the four long stamens bulge out and become 
distinct from the central dome of cells that comprise the FM. The 
two lateral stamen primordia arise slightly lower on the dome and 
develop later. The petal primordia grow somewhat but are still 
relatively small. A rim around the central dome of the fl ower pri-
mordium now begins to grow upward to produce an oval tube that 
will become the gynoecium (Figures 3 and 4H-I). 

STAGE 7: This stage begins when the growing primordia of the 
long stamens become stalked at their base. The stalks give rise to 
the fi laments, and the wider upper region to the anthers. By this 
stage, petal primordia have become hemispherical although they 
are still relatively small (ca. 25 μm in diameter; Figures 3 and 5A-B).

STAGE 8: The beginning of stage 8 is defi ned by another land-
mark in stamen development: anther locules are visible as convex 
protrusions on the inner (adaxial) surface of the long stamens. 
At this stage stamens are 55-60 μm long most of which is the 
developing anther. Locules also appear soon after in the short 
stamens. Petal growth now accelerates and petal primordia be-
come apparent (Figures 3 and 5C-E).

STAGE 9: This stage begins when the petal primordia elongate. 
There is a rapid lengthening of all organs especially of petals that 
acquire a tongue-like shape and increase in length from about 45 
μm to up to 200 μm. Nectary glands appear and the stamens grow 
rapidly. By the end of stage 9, the medial stamens are around 300 
μm long. Most of this growth occurs in the anther region, which still 
accounts for over 80% of their total length. At this stage the fl oral 
bud remains completely closed (Figures 3 and 5F-G). 

STAGE 10: The rapidly growing petals reach the top of the 
lateral stamens. The cap of papillae that will constitute the stigma 
starts to form at the top of the gynoecium (Figures 3 and 5H-I).

STAGE 11: This stage begins when the upper surface of the 
gynoecium develops stigmatic papillae (Figures 3 and 6A-C) al-
though their outward growth is limited at fi rst to regions not in 
contact with the overlapping sepals. By the end of this stage petal 
primordia reach the top of the medial stamens.

STAGE 12: Petals continue to lengthen relatively rapidly. Lat-
eral sepals continue to grow while the stamens and gynoecium 
lengthen coordinately. The anthers have almost reached their 
mature length of 350-400 μm and the fi laments now lengthen rap-
idly. The upper part of the gynoecium differentiates into the style 
(Figure 6D) and a sharp boundary separates it from the cap of 
stigmatic papillae. Stage 12 ends when the sepals open (Figures 
3 and 6D-F).

STAGE 13: Petals become visible between the sepals and 
continue to elongate rapidly. The stigma is receptive at this stage 
(Figures 3 and 6G-H). Stamen fi laments extend even faster so 

the stamens outstrip the gynoecium in length and self pollination 
takes place. The gynoecium is now mature and its three distinct 
regions can be distinguished: an apical stigma, a style, and a bas-
al ovary. After pollination, pollen tubes grow to fertilize the ovules, 
the stamens extend above the stigma, and furrows at both valve/
replum boundaries appear.

STAGE 14: This is also defi ned as the stage zero hours after 
fl owering (0 HAF), and it marks the beginning of silique (the fertil-
ized pistil or fruit) and seed development. Cells in the exocarp 
continue to divide anticlinally and expand longitudinally in the re-
plum and the valve, where there is also some expansion in other 
directions. There is also division and expansion in the mesocarp 
and many chloroplasts develop (Figures 3 and 6I).

STAGE 15: The stigma extends above the long anthers. In the 
carpel walls, cell division and expansion continue. The medial vas-
cular bundles continue to grow and xylem lignifi es, while the lateral 
bundles branch out through the mesocarp (Figures 3 and 6J-K).

STAGE 16: At this stage the silique is twice as long as a 
stage-13 pistil. Petals and sepals wither and tissues in the silique 
continue expanding (Figures 3 and 6L).

STAGE 17: This stage is defi ned by the abscission of the se-
nescent fl oral organs from the silique, ~2 days after fertilization. 
The green silique grows to reach its fi nal length and matures, a 
phase lasting about 8 days making this the longest stage. The 
dehiscence zone also differentiates (Figures 3, 7A and 7E; Sub-
stages 17A and 17B, see Roeder and Yanofsky, 2006).

STAGE 18: The silique begins to yellow from the tip to the 
base. One of the endocarp cell layers (the second from the inside) 
lignifi es further, and the inner endocarp cell layer disintegrates, 
while the mesocarp begins to dry out. It has been suggested that 
lignifi cation may contribute to the silique shattering process, act-
ing in a springlike manner to create mechanical tensions (Figures 
3 and 7B).

STAGE 19: The valves begin to separate from the dry silique, 
apparently owing to the lack of cell cohesion at the separation 
layer.(Figures 3 and 7C).

STAGE 20: At this stage the valves become separated from 
the dry silique and the mature seeds are ready to be dispersed 
(Figures 3, 7D and 7F).

2.4 Morphology, Histology and Development of
Floral Organs

Sepals: In sepals L1-derived cells form the epidermis, the meso-
phyll originates from the L2, and the L3 contributes to the vascu-
lature in the basal part (Jenik and Irish, 2000). Sepals and petals 
together form the perianth. Both organ types have a simple lami-
nar structure, consisting of an epidermis, mesophyll and rather 
delicate vascular bundles (veins). The four sepal primordia (the 
abaxial, adaxial, and two lateral sepal primordia) are the fi rst fl oral 
organ primordia to appear. They arise at stage 3 of fl ower devel-
opment in a cruciform pattern (Figures 4C-D; Smyth et al., 1990; 
Bowman, 1994). Whether all four sepals occupy one whorl or the 
two lateral sepals occupy a separate outer whorl, has been the 
subject of discussion (Figure 4E; Smyth et al., 1990; Bowman, 
1994; Choob and Penin, 2004), but all sepal primordia are formed 
at around the same time, shortly after they are specifi ed (Figure 
4E; Bowman, 1994).
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Figure 5. Stages 7 to 10 of Arabidopsis fl ower development. 

(A) Stage 7 in which petal (pe) and stamen (arrowhead) primordia are indicated.
(B) Vertical view of the gynoecium (g) in a stage 7 fl oral primordium. 
(C) to (E) Carpels and stamens at stage 8 of fl oral development are shown. Filament (f) and anther (a) regions of the stamen are differentiated (C) and 
a slot is formed at the tip of the style in the gynoecium (D). Section through the fl oral bud with sepals (se), petals (pe), stamens (st) and gynoecium (g) 
indicated (E).
(F) and (G) Floral bud at stage 9 in which petal primordia (pe) are indicated (F). Section through fl ower primordium (G) in which XAL1:GUS is shown 
staining nectaries (n). 
(H) and (I) Stage10 fl owers. Flower bud showing the enlarged sepals which cover other fl oral organs, stalked petals and stamens, and developing carpels 
in the center (H). Stigma starts to be formed at the top of the gynoecium (I, arrows)

Bars = 10 μm except in (F) and (H). Images (A), (B), (C), (G) and (I) are of Lansberg erecta ecotype, from Smyth et al. (1990) provided by Dr J. Bowman. 
Some sepals were removed from fl ower buds shown in (A), (B), (C), (D), (F), (H) and (I). All images except (E) and (G) are SEM. (D), (E), (F), (H) are of 
Columbia-0 ecotype.

The adaxial and abaxial surfaces of the sepal epidermis are 
different (Figures 8B and 8D-E). On the abaxial surface, cells 
have irregular shapes and sizes with some quite long cells (with 
nuclei of various sizes) and fringes of smaller cells. Unlike the 
adaxial surface, the abaxial surface has stomata and may have 

unbranched trichomes (Figure 8E; Smyth et al., 1990; Bowman, 
1994; Hase et al., 2000; Krizek et al., 2000). 

Petals: In the petal primordium the meristematic layer L1 con-
tributes to the epidermis and L2 to the mesophyll; as yet cells 
originating from L3 have not been found to form part of the petal 
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(Figure 2B; Jenik and Irish, 2000). These primordia become ap-
parent almost at the same time as stamen primordia at stage 5 of 
fl ower development. Visible signs of petal differentiation are seen 
by stage 9 (Figure 5F; Smyth et al., 1990; Bowman, 1994). The 
four petals of Arabidopsis are white and fl at and approximately 
the same size and shape. They are narrower and greenish toward 
the base (Figure 8C; Takeda et al., 2004).

Cells on the adaxial surface are conical with epicuticular thicken-
ings running from the cell base to the apex, whereas those on the 
abaxial surface are fl atter and more cobblestone-like with cuticular 
thickening (Figures 8F-G). Stomata are absent from both petal sur-
faces (Bowman, 1994; Krizek et al., 2000). Cells toward the base of 
petals resemble those of stamen fi laments (Bowman, 1994).

Stamens: Primordia appear at stage 5 of fl ower development 
(Figure 4F) due to periclinal divisions in the subprotodermal cell 
layer (L2) and sometimes in L3 (Crone and Lord, 1994; Jenik and 
Irish, 2000). Stamen primordia are visible at stage 6. By stage 7, 
differentiation can be observed and long stamen primordia ap-
pear stalked at their bases (Figures 4I and 5A-B; Bowman, 1994; 
Smyth et al., 1990). At this stage stamen primordia are composed 
of an L1-derived epidermis, one layer of L2-derived subepider-
mis, and an L3-derived core (Figure 2B; Jenik and Irish, 2000). 
Locules appear in the anthers by stage 8 (Figure 5C). Growth 
of the internal anther tissue at this stage is due to divisions of 
L2-derived cells (Jenik and Irish, 2000). At stage 14, anthers ex-
tend above the stigma (Figure 5I; Bowman, 1994). In the mature 
anther, the L3 cells contribute only to the vasculature (Jenik and 
Irish, 2000). Stamens of the Arabidopsis fl ower are not formed 
simultaneously: four long medial stamens arise a little earlier than 
the two short lateral ones (Smyth et al., 1990). 

Each stamen consists of two distinct parts, the fi lament and the 
anther. At the tip of the fi laments, the anther develops both repro-
ductive and non-reproductive tissues that produce, harbor, and 
release pollen grains upon maturity (Goldberg et al., 1993). The 
anther is a bilocular structure with longitudinal dehiscence (Figure 
6G; Bowman, 1994). Each locule develops from successive divi-
sions of subprotodermal archesporial cells formed in the anther 
primordium that gives rise to three morphologically distinct layers: 
the endothecium, the middle layer, and the tapetum which sur-
rounds the pollen mother cells (PMCs). The PMCs undergo meio-
sis and form the haploid microspores. The tapetum is a source 
of nutrients and is indispensable for microspore maturation (Xing 
and Zachgo, 2008). Anther development and microspore forma-
tion in Arabidopsis is a complex process that has been divided 
into 14 stages (See also section 3.4.5; Sanders et al., 1999). 

Once formed, PMCs are surrounded by a layer of callose. Af-
ter meiosis, the anther contains most of its specialized cells and 
tissues, and tetrads of microspores are present within the pollen 
sacs; with microspores in each tetrad surrounded by a callose 
wall. Callose dissolves and microspores are released. As pollen 
grains develop, the anther enlarges and is pushed upward in the 
fl ower by the elongating fi lament (Scott et al., 2004).

Carpels: The fourth and innermost whorl is occupied by the 
gynoecium that is composed of two fused carpels. Carpel primor-
dia start to form at stage 6 of fl ower development (Figure 4I) due 
to periclinal cell divisions in the L3 layer (Jenik and Irish, 2000). 
Carpels enclose and protect the developing ovules, mediate pol-
lination, and after fertilization develop into a fruit within which fer-
tilized ovules develop into seeds (Bowman et al., 1999). The gy-

noecium consists of two valves separated by a false septum with 
ovules arising from parental placental tissue on each side of the 
septum (Bowman, 1994). The valves grow upward from the fl ower 
meristem to form a closed cylinder. At early stage 8, the walls of 
the cylinder are composed of an L1-derived epidermis, one L2-
derived subepidermal layer and a two-cell thick, L3-derived core. 
At this stage the distal L2 cells start to divide periclinally (with 
respect to the top surface of the cylinder), contributing to the lon-
gitudinal growth of the carpel (Figure 2B; Jenik and Irish, 2000). 
Later the inner surfaces of septal outgrowths within this cylinder 
will fuse, the tip will close and ovules will develop along the mar-
gins of the fused walls (placenta) of the bilocular chamber (Bow-
man, 1994; Sessions and Zambryski, 1995). The gynoecium is 
oriented in the fl ower so that the septum coincides with the medial 
plane (Figures 4D-E and 4G; Sessions and Zambryski, 1995). 

At the distal end of the gynoecium, the stigma, an epidermal 
structure composed of stigmatic papillae (bulbous elongated 
cells), functions in pollen binding and recognition and participates 
in the induction of pollen germination (Figures 6A-B). After germi-
nation, the pollen tubes will grow between the papillar cells into 
the transmitting tract at the center of the style and the septum of 
the ovary (Bowman, 1994; Sessions and Zambryski, 1995). 

At about stage 11, the inner and outer integuments of the 
ovule are formed. By stage 12, the integuments of the developing 
ovule grow to cover the nucellus and megagametogenesis occurs 
(Figures 6E-F; Bowman, 1994). 

Nectaries: These organs produce and secrete nectar. Nectar 
is a protein- and carbohydrate-rich solution, which varies in com-
position among different plant species (Davis et al., 1998). Nectar 
may be a reward for pollinators or for insects that protect the plant 
against herbivores, or even a lure for animal prey in carnivorous 
plants (Davis et al., 1998; Baum et al., 2001; Lee et al., 2005a). 

In Arabidopsis, the nectarium (multiple nectary) found in in-
dividual fl owers (Davis et al., 1998) is composed of two parts: 
nectary glands that form below the stamen fi lament, and the 
connective tissue linking the glands in a continuum around the 
androecium (Bowman, 1994; Baum et al., 2001). The nectarium 
is always situated in the third whorl of the fl ower and its location 
is independent of the identity of the other organs occupying this 
whorl. These glands are formed from stage 9 to 17 of fl ower de-
velopment (Figure 5G; Bowman, 1994; Bowman and Smyth 1999; 
Baum et al., 2001; Tapia-López et al., 2008). 

3. MOLECULAR GENETICS OF ARABIDOPSIS FLOWER 
DEVELOPMENT

Plant organogenesis, including fl ower formation, occurs from ac-
tively proliferating meristems over the entire life cycle. In the next 
section we provide a very brief summary of the molecular mecha-
nisms that maintain an active SAM. In section 3.2, we explain how 
the fl ower meristem is specifi ed and becomes determinate after 
the fl ower organs are formed.

3.1 Shoot Apical Meristem Proliferation and Maintenance

The balance between cell proliferation and cell recruitment to 
differentiated tissues in the SAM is dependent on mechanisms 
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Figure 6. Stages 11 to 16 of Arabidopsis fl ower development. 

(A) to (C) Stage 11 of fl ower development where the gynoecium develops stigmatic papillae (arrows) (A) and (B). Longitudinal section where sepals (se), 
stamen (st), and gynoecium (g) are indicated (C).
(D) to (F) Flower primordium at stage 12. Longitudinal (E) and transverse (F) sections showing all the organs as well as ovules and pollen grains. 
(G) and (H) Flower anthesis at early stage 13 when the stigma (arrowhead) is already receptive (G); a close-up view of the stigma (H).
(I) to (L) Flower primordium at stages 14 (I) and 15 where the gynoecium has begun to enlarge to form the silique (J). Close-up of a stage-15 stigma (K)
and stage-16 fl owers where sepals and petals are beginning to wither (L).
Bars = 100 μm. All images except (C), (E) and (F) are SEM. Images are of Columbia-0 ecotype, except (A) that is of Landsberg erecta (from Smyth et 
al.,1990, provided by Dr. J. Bowman).

regulated by WUSCHEL (WUS; Laux et al., 1996; Sablowski, 
2007). The homeodomain-containing WUS transcription factor 
has the role of the maintaining the identity of stem cells in the 
organizing center of the CZ; wus mutants lack stem cells in the 
SAM (Mayer et al., 1998). WUS expression is limited to the cells 
immediately below the stem cells, an expression domain regu-
lated by the receptor-kinase signaling system that includes the 
CLAVATA1, 2 and 3 (CLV1, 2, 3) gene products (Mayer et al., 
1998; Brand et al., 2000; Schoof et al., 2000). CLV1 is expressed 
in most L3 stem cells while CLV3 is expressed in all three stem 
cell layers but mostly in L1 and L2 stem cells (see Figure 2B; 
Clark et al., 1997; Fletcher et al., 1999). In clv mutants, there is 

an imbalance between cells retained within meristems versus 
those recruited to form lateral organs. clv mutations cause an 
expansion of the WUS expression domain resulting in an en-
larged stem cell niche. CLV3 expression is, in turn, positively 
regulated by WUS, suggesting that meristem size depends 
greatly on a WUS-CLV regulatory loop (Clark et al., 1993, 1995; 
Kayes and Clark, 1998; Brand et al., 2000). Overexpression 
of CLV3 represses WUS expression and decreases meristem 
activity, suggesting that CLV3, a secreted CLE-domain pep-
tide, is the signal that regulates WUS expression via the CLV1/
CLV2 LRR protein-kinase transduction complex (Fletcher et al., 
1999; Jeong et al., 1999; Trotochaud et al., 1999; Clark, 2001a 
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and 2001b; Ni and Clark, 2006). It has been shown that other 
LRR-protein kinases closely related to CLV1 like BARELY ANY 
MERISTEM1 and 2 (BAM1, 2) are also involved in meristem 
maintenance possibly by sequestering CLV3 on the fl anks of 
the meristem where they are expressed (DeYoung et al., 2006; 
DeYoung and Clark, 2008). 

SHOOT MERISTEMLESS (STM) is a KNOTTED1-like ho-
meobox (KNOX) gene that encodes a protein expressed in the 
SAM’s CZ, RZ and regions of the PZ that have not been assigned 
to a primordium, i.e. it is expressed throughout the meristem ex-
cept for anlagen, the sites of primordium formation (Figure 2B). 
STM promotes the profi leration of stem cell derivatives until a 
critical cellular mass is attained suffi cient to form either leaves or 
fl oral primordia. It also inhibits the expression of ASYMMETRIC
LEAVES1 and 2 (AS1, 2) genes in the SAM, preventing these 
cells from undergoing premature differentiation (Byrne et al., 
2000; Byrne et al., 2002). Thus, the STM gene is considered to 
play a pivotal role in meristem maintenance (Long et al., 1996; 
Carles et al., 2004). ULTRAPETALA1 (ULT1) encodes a cyste-
ine-rich protein with a B-box like domain that restricts the size 
of shoot and fl oral meristems. It functions antagonistically to the 
proliferative roles of WUS and STM during most of the Arabidop-
sis life cycle but it in an independent genetic pathway (Carles et 
al., 2004). 

3.2 Floral Meristem Specifi cation and Determination

The changes in cellular characteristics, growth and geometry ob-
served in the transition of the SAM to an IM (Kwiatkowska, 2006) 
are correlated with dynamic changes in the spatial and temporal 
expression of certain genes. The Arabidopsis IM produces rudi-
mentary bracts in whose axils fl ower meristems emerge. STM
and AINTEGUMENTA (ANT) expression patterns correlate with 
the development of this rudimentary bract primordium (Long and 
Barton, 2000). 

The expression of LEAFY (LFY), a transcription factor found 
only in plants (Schultz and Haughn, 1991; Weigel et al., 1992; 
Maizel et al., 2005; Weigel, 2005) and ANT has been used in 
order to trace the cells that form the fl ower primordium (Grand-
jean et el., 2004). First, tens of cells are rapidly recruited to those 
already committed to become part of the fl ower meristem. This 
stage may correspond to the upward bulging at the shallow crease 
formed between the rudimentary bract and the IM described by 
Kwiatkowska (2006). These cells which express LFY then con-
tinue to proliferate. Interpretating this, the fi rst cells that express 
LFY would correspond to the rudimentary bract (but not its axil or 
shallow crease), and later the domain of LFY expression would 
expand to include the cells committed to the fl ower primordium 
proper (Kwiatkowska, 2006). This interpretation can explain the 
discrepancy in the number of founder cells estimated using sec-
tor boundary analysis (Bossinger and Smyth, 1996) and using in
vivo LFY expression patterns (Grandjean et al., 2004). Bossinger 
and Smyth (1996) concluded that a FM derives from four founder 
cells directly on the surface of the IM (or SAM). In support of this, 
evidence from confocal laser scanning microscopy indicates that 
fl ower primordia are formed from two rows of cells in a radial arc 
(Reddy et al., 2004). In contrast, the number of cells express-
ing LFY at these early stages (Reddy et al., 2004) suggest that 

Figure 7. Stages 17 to 20 of Arabidopsis fl ower development.

(A) to (D) Photographs of developing and mature siliques at stages 17 (A),
18 (B), 19 (C), and 20 (D) of fl ower development. 
(E) SEM of seeds from a silique at stage 17. 
(F) Close-up view of a seed from a stage-20 dehiscent silique. 
All photographs are of Columbia-0 ecotype.

a fl ower meristem has more founder cells. An explanation that 
resolves the discrepancy is that the LFY-expressing cells could 
include those that eventually form the rudimentary bract, as well 
as those which form the fl ower primordium (Kwiatkowska, 2006; 
reviewed in Kwiatkowska, 2008) 

The gene CUP-SHAPED COTYLEDON2 (CUC2) is ex-
pressed in the slow-dividing cells that expand in a latitudinal di-
rection (Reddy et al., 2004) to defi ne the second boundary be-
tween the fl oral primordium proper and the IM (Breuil-Broyer et 
al., 2004). Several regulators of CUC including a miRNA have 
been described as important components of the GRN involved in 
this developmental process (Laufs et al., 2004; Aida and Tasaka, 
2006a). 

Flower versus infl orescence meristem identity is controlled 
by a complex GRN that integrates environmental and internal 
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cues (Figure 9). On induction of fl owering, the IM genes, such as 
TERMINAL FLOWER 1 (TFL1; Alvarez et al., 1992; Shannon and 
Meeks-Wagner, 1991 and 1993, Ohshima et al., 1997) and EM-
BRYONIC FLOWER 1 and 2 (EMF1, 2; Chen et al., 1997; Aubert 
et al., 2001), are repressed in the FM, while the fl oral meristem 
identity (FMI) genes, mainly LFY, APETALA1 (AP1), APETALA2 
(AP2), and CAULIFLOWER (CAL), are upregulated (Figure 10; 
Blazquez et al., 1997; for review Mandel et al., 1992; Weigel et 
al., 1992; Bowman et al., 1993; Kempin et al., 1995; Mandel and 
Yanofsky, 1995a; Blazquez et al., 2006). 

Mutual repression of the IM and FMI genes seem to underlie 
the co-existence, identity and boundaries of both types of meristem 
in the SAM in the transition to fl owering (Chen et al., 1997; Liljegren 
et al., 1999; Ratcliffe et al., 1999). For example, if genes such as 
TFL1 or EMF1 or 2 are mutated, LFY and/or AP1 are ectopically 

expressed in the IM that is then transformed into a FM (Shannon 
and Meeks-Wagner, 1991; 1993; Weigel et al., 1992, Bowman et 
al., 1993; Gustafson-Brown et al., 1994; Bradley et al., 1997; Chen 
et al., 1997; Moon et al., 2003). On the contrary, if AP1, CAL and 
LFY are repressed, the FM attains IM identity (Ratcliffe et al., 1998; 
Ratcliffe et al., 1999). TFL1 is an important regulator of infl ores-
cence development (Alvarez et al., 1992; Ratcliffe et al., 1998; Par-
cy et al., 2002). It encodes a phosphatidyl ethanolamine-binding 
protein (PEBP) that is transcribed in the center of the IM but the 
protein moves to other cells where AP1 and LFY are downregulat-
ed (Bradley et al., 1997; Conti and Bradley, 2007). EMF genes are 
required for vegetative growth, but they seem to regulate fl owering 
time and infl orescence development too (Sung et al., 1992; Aubert 
et al., 2001; Yoshida et al., 2001). Loss-of-function mutants in these 
genes produce fl owers immediately after germination skipping the 
vegetative phase (Yang et al., 1995; Chen et al., 1997). EMF1 en-
codes a transcription factor that represses AP1 but not LFY, and 
EMF2 encodes a novel zinc fi nger protein related to the polycomb 
group (Aubert et al., 2001; Yoshida et al., 2001). 

LFY is necessary and suffi cient to specify FMI (Weigel et 
al., 1992; Weigel and Nilsson, 1995). In lfy mutants, leaves and 
secondary shoots are produced instead of fl owers (Schultz and 
Haughn, 1991; Weigel et al., 1992) and LFY overexpression 
causes the conversion of leaves and axillary meristems to fl ow-
ers (Weigel and Nilsson, 1995). LFY is expressed in the leaf pri-
mordia during vegetative growth, but when induced by external 
(vernalization and light) and/or internal (gibberellins) signals, it is 
strongly expressed and relocates to the SAM fl anks where fl oral 
meristems are formed (Figure 9; Blazquez et al., 1997; Hempel 
et al., 1997; for LFY regulation see: Nilsson et al., 1998; Blazquez 
and Weigel, 2000; Liu et al., 2008). LFY expression persists at 
high levels in the FM until stage 3 of development and then di-
minishes in the center of the fl ower (Figure 10; Blazquez et al.,
1997; Wagner et al., 2004). LFY protein abundance, however, is 
homogenous in the FM, probably because it moves between cells 
(Parcy et al., 1998; Sessions et al., 2000; Wu et al., 2003).

LFY and AP1 have overlapping functions in establishing the 
FM; while the ap1 mutant has shoots with infl orescence charac-
teristics, the lfy ap1 double mutant has an almost complete con-
version of fl owers into shoots (Huala and Sussex, 1992; Bowman 
et al., 1993). Both genes when overexpressed cause a terminal 
fl ower phenotype suggesting that each one is suffi cient to deter-
mine the IM (Mandel and Yanofsky, 1995a; Weigel and Nilsson, 
1995). CAL, the closest paralogue of AP1, and FRUITFULL (FUL)
from the same gene clade within the MADS-box phylogenetic tree 
(Alvarez-Buylla et al., 2000; Martínez-Castilla and Alvarez-Buylla, 
2003; Parenicová et al., 2003), may also act redundantly to AP1 in 
FM specifi cation. Single cal and ful mutants do not show any FMI 
disorders, but in combination with ap1 in double or triple mutants, 
the ap1 phenotype is greatly intensifi ed (Bowman et al., 1993; 
Kempin et al., 1995; Ferrándiz et al., 2000a). FUL is expressed 
at the same time as LFY during the establishment of the FMI 
(Mandel and Yanofsky, 1995b; Hempel et al., 1997), but is mostly 
localized in the IM (Figure 10). Later during fl ower development, 
FUL is expressed again during carpel and silique development 
where it plays an important role (Gu et al., 1998). Despite its close 
similarity to AP1, overexpression of CAL is not able to determine 
the IM as does overexpression of AP1, indicating that CAL does 
not interact with the same partners as AP1. The unique functions 
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Figure 8. Sepal and petal cell types. 

Scanning electron micrographs (SEM) of wild-type fl owers and fl ower or-
gans.
(A) A mature fl ower with sepals (se) and petals (pe) fully expanded and 
the stigma extending above the long stamens. 
(B) Sepal blade showing simple unbranched trichomes (arrowheads) 
characteristic of the abaxial surface. 
(C) Mature petal blade consisting of a basal claw and a distal blade. 
(D) Adaxial sepal surface with irregular sizes and shapes of cells, some 
elongated (800x). 
(E) Abaxial sepal surface bearing stomata (arrows) and characteristic 
elongated cells (500x). 
(F) Adaxial surface of a mature petal blade showing conical cells with epi-
cuticular thickenings running from the base to the apex (800x). 
(G) Abaxial petal surface showing fl atter, cobblestone-shaped cells with 
cuticular thickenings. Both petal surfaces lack stomata.
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of AP1 rely on residues within the K and COOH domains that are 
not found in CAL (Alvarez-Buylla et al., 2006). 

LFY directly regulates AP1 and CAL transcription by binding 
to the consensus sequence CCANTG (CArG-box; Parcy et al.,
1998; Wagner et al., 1999; Wagner et al., 2004; William et al.,
2004). However, expression reminiscent of AP1 is seen in the lfy
mutant, while it is completely abolished in the double mutant lfy
ft (fl owering locus t; Ruiz-Garcia et al., 1997; Schmid et al., 2003; 
Wigge et al., 2005). Thus FT, a homolog of TFL1 (Koornneef et al.,
1991; Kardailsky et al., 1999), together with FD, a bZip transcrip-
tion factor (Abe et al., 2005), redundantly regulate AP1 with LFY. 
AP1 and CAL in turn regulate LFY by positive feedback, allowing 
it to exert its transcriptional regulation during fl ower development 
(Bowman et al., 1993; Liljegren et al., 1999). Recently, additional 
LFY targets have been found (William et al., 2004), among them 
LATE MERISTEM IDENTITY1 (LMI1), which encodes a home-
odomain leucine-zipper transcription factor and functions as a 
FMI gene. Interestingly, LMI1 acts together with LFY to activate 
CAL expression (Figure 9; Saddic et al., 2006).

AP2 encodes a putative transcription factor of a plant-specifi c 
gene family (AP2/EREBP) with diverse functions (Riechmann 
and Meyerowitz, 1998). Mutations in AP2 enhance both ap1 and 
lfy mutant phenotypes, indicating that AP2 also plays a role in 
specifying FMI (Huala and Sussex, 1992; Schultz and Haughn, 
1993; Shannon and Meeks-Wagner, 1993; Simpson et al., 1999).

MADS-box genes are key components of the regulatory mod-
ule that integrates fl owering transition signaling pathways (for re-
view see Jack, 2004; Parcy, 2005, Blazquez et al., 2006), IM and 
FM identities (Mandel et al., 1992; Bowman et al., 1993; Mandel 
and Yanofsky, 1995a, 1995b), and fl oral organ specifi cation (see 
section 3.3; Coen and Meyerowitz, 1991). To specify the FM, LFY 
and/or AP1 are also required to downregulate fl owering induction 
genes such as AGAMOUS-LIKE 24 (AGL24), SUPPRESSOR OF 
OVEREXPRESSION OF CO 1 (SOC1), SHORT VEGETATIVE 
PHASE (SVP), and FUL (Figures 9 and 10). Overexpression of 
any of these genes causes FM to revert to IM-like structures as 
when LFY and/or AP1 are mutated (Mandel and Yanofsky 1995b; 
Yu et al., 2004a; Liu et al., 2007).

Floral reversion is often found in plants heterozygous for lfy-
6 (LFY/lfy) and homozygous for agamous-1 (ag-1), suggesting 
a key role for LFY and AG in the maintenance of determinate 
fl oral meristems (Okamuro et al., 1996). The reason for this is 
that late in fl oral organogenesis AG, induced by WUS, LFY and 
PERIANTHIA (PAN) among others, positively regulates KNUCK-
LES (KNU) which in turn represses WUS expression to terminate 
the stem cell niche after a limited number of organs have been 
formed (Parcy et al., 1998; Busch et al., 1999; Lenhard et al., 
2001; Lohmann et al., 2001; Das et al., 2009; Maier et al., 2009; 
Sun et al., 2009). In fact, while WUS expression declines after 
stage 6 in wild-type fl owers, it persists in pan or ag fl owers (Len-
hard et al., 2001; Lohmann et al., 2001; Das et al., 2009; Maier 
et al., 2009). ULT also participates in meristem determinancy to-
gether with AG downregulating WUS (Carles et al., 2004).

Although it is very rare to observe spontaneous or induced 
reversion from FM to IM, a set of genes that actively maintain FM 
identity could conform to a “fl ower developmental module” that 
prevents reversion. The genetic mechanisms involved in maintain-
ing FMI are closely linked to hormone balance and environmental 
factors (Tooke et al., 2005). For example, we now know that STM

is a positive regulator of local cytokinin (CK) biosynthesis and 
accumulation (Jasinski et al., 2005; Yanai et al., 2005), and a re-
pressor of gibberellin (GA) production (Jasinski et al., 2005). On 
the other hand, WUS enhances CK activity by repressing ARABI-
DOPSIS TYPE A RESPONSE REGULATORS (ARRs) (Leibfried 
et al., 2005). The resulting high CK:auxin ratio and low GA levels 
promote indeterminate growth (Shani et al., 2006). While a high 
auxin concentration restricts STM and CUC expression (see sec-
tion 3.4.2), it also downregulates CK biosynthesis and activity, 
thus yielding a high auxin:CK ratio and high levels of GA, which 
induce fl oral meristem formation. Raising GA levels or response, 
for example by crossing with the spindly (spy) mutant, is suffi cient 
to suppress FM reversion to IM in lfy, ap1, ap2 and ag mutants. 
This demonstrates the importance of GA in the maintenance of 
FM identity (Okamuro et al., 1996; Okamuro et al., 1997). 

Light signal transduction pathways are also involved in FM 
maintenance. Spontaneous fl oral reversion in wild-type Arabidop-
sis has only been observed at low frequencies in the fi rst fl owers 
of Landsberg erecta grown in short days. However, long hypocotyl
(hy1-1), a mutant in which phytochrome activity is blocked, sup-
presses fl oral reversion of both lfy and ag single mutants in short 
days (Okamuro et al., 1996). Floral reversion seems to be a devel-
opmental abnormality with no apparent adaptative signifi cance, 
unless plant resources are somehow saved under certain condi-
tions if fl owering is reversed. Further ecological and evolutionary 
developmental studies of Arabidopsis ecotypes will continue to 
elucidate the genetic, epigenetic, physiological, and environmen-
tal mechanisms involved in the maintenance of the FMI. 

3.3 Specifi cation of Floral Organs: The ABC Genes

Very soon after FM specifi cation (11-13 days after germination 
in Landsberg erecta ecotype), the fl ower meristem is subdivided 
into four regions. Each one will give rise to the primordia of the 
different fl oral whorls, which from the outside to the inside are: 
sepals, petals, stamens, and carpels. The genes responsible for 
fl oral whorl specifi cation attain their spatio-temporal pattern as a 
result of regulatory interactions among themselves, interactions 
with meristem identity genes and with some other genes, such 
as WUS and UNUSUAL FLORAL ORGANS (UFO; Levin and 
Meyerowitz, 1995). The complexity of the interactions involved is 
shown in the ‘fl oral organ specifi cation gene regulatory network’ 
(FOS-GRN) model, analyzed in Section 4.1. This model includes 
a set of interacting genes suffi cient to pattern the IM and FM dur-
ing the fi rst stages of fl ower development. 

One of the key FM identity genes is LFY. The protein encoded 
by this gene requires co-factors to set the spatial limits of ex-
pression of the fl oral organ identity genes AP3, PI, and AG. For 
example, LFY participates with UFO in the regulation of AP1 and 
AP3 transcription (Lee et al., 1997; Chae et al., 2008), and with 
WUS co-regulates the expression of AG (Lenhard et al., 2001; 
Lohmann et al., 2001). LFY also regulates the expression of the 
SEPALLATA (SEP) genes SEP1, SEP2 and SEP3, additional 
MADS-box genes required for organ identity specifi cation (Krizek 
and Fletcher, 2005). 

UFO is expressed in the second and third whorls during fl o-
ral stage 3, probably restricting the B-gene expression domain 
to these whorls, together with LFY (Lee et al., 1997; Traas and 
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Doonan, 2003). The UFO gene encodes a protein containing an 
F-box domain, which is a characteristic of E3 ubiquitin ligases 
that are components of SCF (Skp Cullin F-box containing) com-
plexes and mark proteins for proteosome-dependent degradation 
(Deshaies, 1999). It was recently shown that LFY interacts with 
UFO in order to directly bind the AP3 promoter. Furthermore, the 
proteosome activity mediated by UFO is required for the tran-
scriptional activation of AP3 by LFY (Chae et al., 2008). 

Key components of the GRN that underlies the early pattern-
ing of the fl ower meristem are the so-called ABC homeotic genes, 
AP1, AP2, AP3, PI, and AG, which are all transcription factors 
belonging to the MADS-box gene family, except AP2 (Coen and 
Meyerowitz, 1991; Wagner et al., 1999; Ng and Yanofsky, 2001; 
Lamb et al., 2002). 

The classic ABC model was inferred using Arabidopsis and
Antirrhinum homeotic fl ower mutants (Coen and Meyerowitz, 
1991). In these mutants two fl oral organ types are replaced by 
two other fl oral organ types as follows: A- class mutant fl owers 
have carpels-stamens-stamens-carpels (from the outermost to 
the innermost whorl), B-class mutant fl owers have sepals-sepals-

carpels-carpels, and C-class mutant fl owers have sepals-petals-
petals-sepals (Coen and Meyerowitz, 1991). It was shown that 
mutations in all three functions lead to the transformation of all 
fl oral organs into leaf-like organs, suggesting that fl owers are 
modifi ed leaves (reviewed in Robles and Pelaz, 2005). The Arabi-
dopsis ABC mutants are shown in Figure 11.

Hence, three different classes of homeotic genes with over-
lapping activities were proposed to be necessary for fl oral organ 
specifi cation. The A function specifi es sepals, the A and B func-
tions specify petals, the B and C functions specify stamens and 
the C function specifi es carpels (Figure 12; Bowman et al., 1991). 
The A and C functions negatively regulate each other and the B 
function is restricted to the second and third whorls. The latter 
was originally thought to be independent of A and C functions 
(Bowman et al., 1991; Drews et al., 1991), but it was later shown 
that the A function gene AP1 regulates the B genes. AP1 binds to 
the promoter of AP3 (Hill et al., 1998; Tilly et al., 1998). AP1 can 
also specify petals by regulating the spatial domain of B genes 
together with UFO in the fi rst fl owers to arise, and independently 
of UFO in later fl owers (Ng and Yanoksky, 2001). 

Figure 9. Infl orescence shoot apical meristem (IM) versus fl ower meristem (FM). 

Simplifi ed model of a gene regulatory network (GRN) that induces and maintains the FM. Flowering induction genes like FT, SOC1 and AGL24 are highly 
expressed in the IM in response to external (vernalization and light) and internal (gibberellins; GA) signals. These proteins in turn promote the expression 
of fl ower meristem identity (FMI) genes, LFY and AP1. Paradoxically, during the establishment of the FM, genes like TFL1 and EMF1 that help to maintain 
the IM identity are also expressed, keeping the expression of the FMI genes out of the IM. Later in development, LFY and AP1 repress the expression of 
TFL1 and fl owering genes SOC1 and AGL24, among others, thus maintaining the FMI. Arrows and bars indicate positive and negative regulatory interac-
tions respectively. (See references in main text).
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Once identifi ed at the molecular level, the mRNA expression 
patterns of the ABC genes were shown to overlap with the fl o-
ral regions where the corresponding mutants had a phenotype 
(Yanofsky et al., 1990; Mandel et al., 1992; Goto and Meyerow-
itz, 1994; Jack et al., 1994). AP1 and AP2 are A-function genes. 
AP1 is expressed in the two outer whorls of the fl oral meristem 
(Figures 10, 12, 13A; Mandel et al., 1992) and is important for 
the establishment of sepal and petal identity as well as the FM 
(section 3.2). AP1 expression is fi rst up-regulated by LFY and FT/
FD (section 3.2), but later is maintained by the B class genes in 
a positive feedback loop (Sundström et al., 2006). Strong ap1 al-
leles (ap1-1) often lack petals in the second whorl, while weaker 
mutant alleles of this gene do not have a full homeotic conversion 
of fl oral organs (see section 3.2; Irish and Sussex, 1990).

In contrast to the MADS-box ABCs, the expression pattern of 
AP2 does not correlate with the site where it exerts its function 
in fl oral organ identity. AP2 mRNA is found throughout the fl ower 
meristem (Figures 10 and 12; Jofuku et al., 1994). Recent data 
has shown that AP2 is repressed at the translational level by a 
microRNA (miR172), which is active only in whorls 3 and 4 (Chen, 
2004), thus explaining why the function of AP2 is restricted to the 
fi rst two whorls of fl ower organs. In a recent experiment using 
double mutants of ag and an ap2 allele, which is insensitive to 
repression by miR172, it was shown that both AG and miR172 
independently downregulate AP2, but miR172 is more important 
than AG (Zhao et al., 2007). ap2 mutants rarely develop petals 
and their sepals are transformed into carpelloid structures due to 
ectopic AG expression (Figure 11), which is negatively regulated 
by AP2 itself (Drews et al., 1991). AP2 is also implicated in the 
upregulation of the B genes, AP3 and PI (Zhao et al., 2007).

The B class genes (AP3 and PI) are expressed in the second 
and third whorls and mutant fl owers of any or both of these two 
genes lack petals and stamens, as predicted in the ABC model 

(Figure 11, 12 and 13; Coen and Meyerowitz 1991; Goto and Mey-
erowitz, 1994; Jack et al., 1994; Honma and Goto, 2000). The fact 
that both single mutants yield the same phenotype shows their 
interdependence. AP3 and PI are regulated in two steps: they are 
fi rst induced by LFY/UFO in response to fl owering signals and they 
later maintain their expression in a self-regulatory loop (Honma 
and Goto, 2000). The proteins encoded by these two genes form 
heterodimers to exert their B function during petal and stamen 
development (Figure 14; Jack et al., 1992; Goto and Meyerowitz, 
1994; Zik and Irish, 2003a) and this oligomerization is necessary 
for them to move into the nucleus (McGonigle et al., 1996).

Both genes are also regulated positively in a regulatory loop 
by AP1 and negatively by EARLY BOLTING IN SHORT DAYS 
(EBS), a gene that encodes a nuclear protein that participates in 
petal and stamen development and regulates fl owering time by 
repressing FT (Gómez-Mena et al., 2001; Piñeiro et al., 2003).
ANT, a member of the AP2 gene family, is another regulator of 
the B function, positively inducing AP3 (Klucher et al., 1996; Nole-
Wilson and Krizek, 2006; see section 3.4.2).

The only C-type gene discovered up to now is the MADS-box 
gene AG (Bowman et al., 1989). ag mutant fl owers lack stamens 
and carpels, and also bear indeterminate fl owers with reiterating 
sepals and petals (Figure 11), suggesting that AG is important for 
fl oral meristem determinancy (see section 3.2), besides its role in 
stamen and carpel identity (Yanofsky et al., 1990; Mizukami and 
Ma, 1997). The regulation of AG has been much studied; at least 
ten proteins repress and fi ve activate it to maintain its expression 
in the appropriate whorl (Figures 12 and 13A).

AG is repressed by a transcriptional co-repressor complex 
formed by LEUNIG (LUG) and SEUSS (SEU) (Figure 15; Franks 
et al., 2002). LUG encodes a transcription protein similar to TUP1
from yeast and interacts with SEU, which encodes a plant spe-
cifi c protein (see Table S1; Conner and Liu, 2000; Franks et al., 
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Figure 10. Schematic representation of some infl orescence shoot apical (IM) and fl ower (FM) meristem gene expression patterns at stages 1, 3 and 6. 

Flowering (FUL, AGL24 and SOC), indeterminate (WUS and TFL1), and FMI (LFY, AP1, AP2 and CAL) gene expression patterns based on in situ hy-
bridization data during fl oral primordium developmental stages 1, 3 and 6. At stage 1, expression patterns correspond to their functions in IM and FM 
identities. Sepal (se), petal (pe), stamen (st) and carpel (ca) primordia are indicated. At stages 3 to 6, all with the exception of TFL1 are expressed in the 
FM, probably because their respective proteins also affect organ development. FUL will participate in fruit development, LFY will induce all the ABC genes 
and AP1 and AP2 are fundamental in sepal and petal formation (see references in main text).
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2002; Sridhar et al., 2004). Neither of these proteins are able to 
bind DNA sequences and AP1 and SEP3 recruit SEU/LUG to 
the second intron of AG to perform their inhibitory function and 
prevent the ectopic expression of AG (Sridhar et al., 2006). Re-
cently, another transcriptional repressor of AG was identifi ed, 
LEUNIG_HOMOLOG (LUH). This gene is the closest homolog of 
LUG and its inhibitory function on AG is completely dependent on 
SEU (Sitaraman et al., 2008). 

Another repressor of AG is BELLRINGER (BLR), a homeodo-
main protein that binds to regions in the second intron of AG and 
prevents ectopic AG expression in the two outer whorls of the 
fl ower (see Table S1; Bao et al., 2004). AG is also negatively regu-
lated epigenetically by a histone acetyltransferase GCN5 (Ber-
trand et al., 2003). Other genes that participate in fl oral organo-
genesis are repressors of AG, namely RABBIT EARS (RBE, see 
section 3.4.4), ANT and STERILE APETALA (SAP) (see Table 
S1). AG is also positively regulated at the post-transcriptional lev-

el by several ENHANCER OF AG-4 (HUA) and HUA ENHANCER 
(HEN) genes. All of these genes play a major role in pre-mRNA
processing of AG (Cheng et al., 2003).

The ABC proteins exert their regulatory function as multimers. 
In Antirrhinum majus, a ternary complex between A and B func-
tion proteins was found to bind CArG DNA boxes more effi ciently 
than single proteins (Egea-Cortines et al., 1999). More specifi cal-
ly, a higher-order complex consisting of SQUAMOSA (SQUA, the
AP1 ortholog), DEFICIENS, and GLOBOSA (DEF and GLO are 
A. majus AP3 and PI orthologues, respectively) bound DNA more 
effi ciently than DEF/GLO or SQUA alone (Egea-Cortines et al., 
1999). These results suggest that transcriptional complexes that 
combine A and B function proteins are more stable than those 
formed with proteins of any one function alone.

The fact that the ABC genes are necessary but not suffi cient 
to determine fl oral organ identity was later confi rmed in Arabidop-
sis. Honma and Goto (2001) used a yeast three-hybrid method to 
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Figure 11. Arabidopsis ABC homeotic fl oral mutants. 

Photos of single, double and triple ABC gene mutant fl owers. Each photo is accompanied by a small diagram where rectangles represent the A (AP1 and 
AP2), B (AP3 and PI), and C (AG) combinatorial transcriptional regulatory functions and the SEP (1, 2, 3, 4) genes active in these mutants. Organs are 
listed below from the outer to the inner whorl unless stated otherwise.
(A) Wild-type (WT) fl ower. 
(B) Single ap2 mutant fl ower composed of carpelloid sepals, stamens, stamens and carpels.
(C) The pi mutant has fl owers composed of sepals, sepals, carpels and carpels.
(D) The ag fl ower has the stamens transformed into petals and the carpels are replaced by another fl ower repeating the same pattern. 
(E) The ap2 pi double mutant displays fl owers composed only of sepalloid carpels. 
(F) The ap2 ag fl owers have leaf-like organs in the fi rst and fourth whorls and mosaic petal/stamen organs in the second and third whorls. 
(G) ap3 ag double mutants produce fl owers composed of repeated whorls of sepals. 
(H) The ap2 pi ag mutant has leaf-like organs with some residual carpel properties. (Photographs provided by Dr. J. Bowman). 
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show that SEP3 and AP1 are able to interact with the heterodimer 
AP3/PI but not with AP3 or PI alone. Moreover, they described 
this interaction as essential, since the heterodimer AP3/PI lacks 
the activation domain necessary for a transcription factor to func-
tion, a domain which both SEP3 and AP1 possess (Honma and 
Goto, 2001). These fi ndings suggest that the inclusion of SEP3 
or AP1 together with AP3/PI could result in an active tetrameric 
transcriptional complex (Figure 14). It was also demonstrated that 
the ABC proteins on their own or combined according to the ABC 
model (A, AB, BC, or C) were not suffi cient to determine fl oral 
organs when expressed in leaves under the action of the 35S 
constitutive promoter (Pelaz et al., 2001). However, fl oral organs 
could indeed be recovered in leaves once appropriate combina-
tions of genes were expressed (Honma and Goto, 2001; Pelaz et 
al., 2001).

The SEP genes received their names because the fl oral or-
gans that develop in all four whorls in triple sep mutants resemble 
sepals (Pelaz et al., 2000). This sep1 sep2 sep3 triple mutant 
phenotype is markedly similar to that of double mutants that lack 
both B and C class activity, such as pi ag and ap3 ag (Figure 11G; 
Bowman et al., 1989; Pelaz et al., 2000) in which the fl oral meri-
stem becomes indeterminate as well. Single or double mutants 
for these SEP genes yield fl owers indistinguishable from wild 
type, thus suggesting that the three SEP genes are functionally 
redundant and are important in determining three of the four fl oral 
organs: petals, stamens, and carpels (Honma and Goto, 2001; 
Pelaz et al., 2001; Robles and Pelaz, 2005). 

Given that the triple sep1 sep2 sep3 mutant does not show 
alterations in sepal identity, an additional gene is likely to be in-
volved in sepal specifi cation. Indeed, another SEP-like MADS-
box gene, SEP4 (previously AGL3), has now been character-
ized (Ditta et al., 2004), and the quadruple sep1 sep2 sep3 sep4
mutants produce fl owers with leaf-like organs in all whorls, thus 
confi rming the SEP genes contribute to each fl oral organ identity 
(Figure 14). Coincidently, SEP genes are expressed in the whole 
fl oral meristem during fl ower development (Figure 13B; Flanagan 
and Ma, 1994), are important in regulating B and C gene expres-
sion (Liu et al., 2009), and encode proteins that apparently inter-
act with the ABC proteins (Figure 14; Robles and Pelaz, 2005). 

Based on data from Antirrhinum and yeast two-hybrid and 
three-hybrid protein interactions, and on the phenotypes of the 
ABC mutants, three models have been proposed to explain how 
the MADS domain proteins interact to constitute functional tran-
scriptional complexes and bind DNA. None of the models com-
pletely explains the experimental data available, but the quartet 
model seems the most plausible (Jack, 2001; de Folter et al., 
2005). This model proposes that MADS domain proteins form 
tetrameric complexes during fl oral organ determination (Figure 
14; Theissen, 2001; Theissen and Saedler, 2001; Becker and 
Theissen, 2003; Jack, 2004). Within each transcriptional com-
plex, there would be two MADS dimers, each one binding to a 
single CArG-binding site causing the DNA of the promoter re-
gion to bend, enabling the MADS dimers to act cooperatively in 
a tetrameric complex to regulate the gene. For example, binding 
of one dimer within the tetramer to DNA could increase the af-
fi nity of the second dimer for local DNA binding (Melzer et al., 
2009). Besides, one of the dimers could function as the activa-
tion domain of the tetramer allowing for effi cient transcriptional 
activation (Honma and Goto, 2001). Interestingly, several dimers 
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Figure 12. Expression patterns of the ABC genes during early stages of 
Arabidopsis fl ower development.

SEM of meristems have been colored to show expression patterns of A
class (red, outer whorls), B class (yellow, petal and stamen primordia) 
and C class (blue, inner whorls) genes. Five fl owers at early stages of 
development are marked 1 to 5 (5 being the oldest). Infl orescence shoot 
apical meristem (IM), fl oral meristem (FM) and sepals (se): adaxial (ad) 
and abaxial (ab)  are indicated. (Photographs provided by Dr. J. Bowman).
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Figure 13. Diagram illustrating mRNA expression patterns of Arabidopsis ABC and SEP genes during different stages of fl ower development.

(A) ABC gene expression patterns illustrated from stage 1 to 6. The A function gene AP1 is expressed (red) in the two outer fl oral primordia whorls that will 
later develop into sepals (se) and petals (pe) (Mandel et al., 1992; Gustafson-Brown et al, 1994; Parcy et al., 1998). The A function gene AP2 is expressed 
in all four whorls of the fl ower (see fi gure 10; Jofuku et al., 1994). The B function genes (dark yellow) AP3 and PI are expressed from stage 3 in the next two 
inner whorls of the fl ower (Weigel and Meyerowitz, 1993; Parcy et al., 1998). Interestingly PI is also expressed at stages 3 and 4 in cells that will generate 
the fourth whorl (light yellow). After stage 5, the pattern of PI expression largely coincides with that of AP3, only in petal and stamen (st) primordia (Goto 
and Meyerowitz, 1994). The C function gene AG is expressed (blue) in the two inner whorls that will become the stamens and carpels (ca) (Yanofsky et 
al., 1990; Gustafson-Brown et al., 1994; Parcy et al., 1998; Ito et al., 2004).
(B) SEP gene expression pattern during several stages (1 or 2, 3 and 6) of fl ower development. SEP1 and SEP2 are expressed in all whorls of the fl ower 
(Savidge et al., 1995). SEP3 is fi rst detected in late stage 2 fl ower primordia and afterwards in petal (pe), stamen (st), and carpel (ca) primordia. The ex-
pression pattern at stage 6 was deduced that from at stage 7 (Mandel and Yanofsky, 1998). SEP4 is weakly expressed in sepal primordia at stage 3 and 
strongly expressed in carpel primordia from stage 3 to 6. (Ditta et al., 2004). Both fi gures have been modifi ed and expanded from Krizek and Fletcher (2005).
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and potential tetramers have been documented in a complete 
Arabidopsis MADS-domain family protein-protein interactome 
via yeast two-hybrid interactions (de Folter et al., 2005). This 
data base has been updated with a yeast three-hybrid screen 
for MADS-domain proteins (Immink et al., 2009). Future stud-
ies should test which of the complexes inferred from the MADS 
interactomes are functional and what their roles are during Ara-
bidopsis development. 

3.3.1 Target genes of the ABCs

Target genes of the ABC genes link the fl oral organ specifi cation 
- gene regulatory network (FOS-GRN) with processes in organ 
primordia establishment and development (for review of MADS 
target genes, see de Folter and Angenent, 2006). Among the 
direct targets of the ABC genes, transcriptional regulators and 
hormone-related genes are prominent (Sablowski, 2009). But the 
sets of target genes change as organ development progresses; 
at later stages of fl oral organ development, several components 
of what could be common modules have been found that are in-
volved in generic developmental processes (see below) during 
sepal, petal, stamen and carpel development. Finally, multiple 
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Figure 14. Schematic representation of the interaction of ABC and SEP 
proteins in the quartet model for Arabidopsis fl oral organ specifi cation.

Possible MADS-domain protein complexes (circles) of the ABC model are 
suffi cient for the specifi cation of each of the four fl oral organs. In the ABC 
model, rectangles represent the A (AP1 and AP2), B (AP3 and PI), and C 
(AG) combinatorial transcriptional regulatory functions necessary for se-
pal, petal, stamen and carpel primordia specifi cation. The green rectangle 
below represents the SEP (1, 2, 3 and 4) proteins that interact with pro-
teins encoded by the ABC genes (unknown for AP2 which has not been 
tested) to specify each fl oral organ (modifi ed from Bowman et al., 1993; 
Robles and Pelaz, 2005).

genes having cell-specifi c roles are turned on especially during 
stamen and carpel development that is much more complex than 
perianth development (Sablowski, 2009). 

The fi rst examples of genes regulated by the ABC genes were 
two MADS-box genes, AGL1 and AGL5 (renamed the SHAT-
TERPROOF genes (SPH1 and 2, respectively). There is virtu-
ally no expression of either gene in ag mutants (Savidge et al., 
1995). SHP2 is only expressed in carpels and AG can activate 
an SPH2:GUS reporter construct; furthermore, AG binds its pro-
moter in vitro (Savidge et al., 1995).

The fi rst non-ABC gene identifi ed as a target of a MADS A, 
B or C protein was NAC-LIKE ACTIVATED BY AP3/PI (NAP),
a target of the AP3/PI complex. It is important for the transition 
between cell division and cell expansion during petal and sta-
men development (see section 3.4.5 and Table S1; Sablowski and 
Meyerowitz, 1998).

A recent study identifi ed two genes negatively regulated by 
AP3/PI, GATA NITRATE INDUCIBLE, CARBON-METABOLISM-IN-
VOLVED (GCN) and GCN-LIKE (GNL), a GCN paralog (Mara and 
Irish, 2008). Both genes regulate chlorophyll biosynthesis in plant 
cells. Thus, their downregulation could be important in preventing 
chlorophyll accumulation in petals and anthers. The same study 
shows that both GNC and GNL, together with the B class genes, 
regulate the expression of a number of other GATA-motif-containing 
target genes like HEXOKINASE1 (HXK1; Mara and Irish, 2008).

SUPERMAN (SUP; Bowman et al., 1992) is upregulated by 
AP3/PI and AG and by LFY (Riechmann et al., 1996; Sakai et 
al., 2000). SUP encodes a transcription factor with a C2H2-zinc 
fi nger motif and is involved in the maintenance of the stamen/car-
pel whorl boundary (Sakai et al., 2000; Dathan et al., 2002; see 
section 3.4.2). While the B genes and LFY seem to regulate early 
SUP expression, AG and the B genes are involved in maintaining 
its expression in fl owers from stage 5 onward (Sakai et al., 2000).

Recent microarray experiments have proved useful in reveal-
ing new targets of the ABC MADS homeotic genes, as well as 
many putative components of the complex networks involved in 
fl oral organogenesis. For example, it was shown that the AP3/PI 
dimer regulates, directly or indirectly, 47 target genes. Only two 
of these are transcription factors, while most participate in basic 
cellular functions required for stamen and petal development (Zik 
and Irish, 2003a). By contrast, AG controls, directly or indirect-
ly, the expression of 149 genes most of which are transcription 
factors, including other members of the MADS-box gene family. 
Ten of these were also shown to be direct targets of AG using 
chromatin immunoprecipitation (ChIP), including AG itself, AP3,
CRC and ATH1, a gene that encodes a BELL-type homeodomain 
protein that participates in the development of the basal region of 
shoot organs (Gómez-Mena et al., 2005).

A more exhaustive experiment used four homeotic mutants 
(ap1/ap2, ap3, pi and ag) in two types of microarray assays: a 
whole genome microarray with approximately 26,090 gene-spe-
cifi c oligonucleotides and a fl ower specifi c-cDNA microarray with 
5,000-6,000 genes. To summarize the assay results, transcription 
factors were neither over or underrepresented as being regulated 
by the ABC genes; on the contrary, genes involved in general 
cellular maintenance (DNA recombination and protein synthesis) 
were underrepresented. Genes specifi cally expressed in each of 
the four different whorls were identifi ed: 13 genes for sepals, 18 
for petals, 1162 for stamens, and 260 for carpels. As expected 
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from their structural and cellular complexity, the reproductive fl oral 
organs had many more specifi c target genes than the perianth 
organs (Wellmer et al., 2004; Sablowski, 2009). 

In another genomic study of early fl oral stages it was found 
that many genes were downregulated in incipient fl oral primordia 
while many of them were activated during the differentiation of 
fl oral organs (Wellmer et al., 2006). However, some genes were 
overrepresented during all stages analyzed (i.e. transcription fac-
tors including the family of MADS-box genes, PIN dependent aux-
in transport genes, as well as auxin and GA metabolism genes). 
Even though the MADS box genes were overrepresented, the pro-
moter regions of the genes expressed during these different stag-
es are not enriched in CArG-box sequences compared to random 
samples from the whole genome. This result suggests that MADS-
domain transcription factors may be able to bind sequences other 
than CArG motifs, or that they have few direct targets during the 
developmental stages analyzed (Wellmer et al., 2006).

In a different approach, an inducible post-translational version 
of AG was used in gene expression profi ling to detect AG target 
genes. One of the genes identifi ed that is upregulated by AG is 
SPOROCYTELESS (SPL). AG is able to bind in vitro to the 3’ re-
gion (downstream of the stop codon) of the SPL gene (Ito et al., 
2004). SPL has been described as a key regulator of sporogenesis 
later during stamen and carpel development (see sections 3.4.5, 
3.4.6 and Table S1; Schiefthaler et al., 1999; Yang et al., 1999).

3.4 Floral Organogenesis

The challenge of inferring the topology of the gene regulatory net-
work (GRN) underlying the establishment of fl oral organ primor-
dia, and their development (cell differentiation, morphogenesis 
and growth) is still ahead. However, some key components and 
GRN functional modules characterized to date are summarized 
in Section 4. Such modules involve several functional feedback 
loops and underlie different generic developmental processes 
mainly: primordia type specifi cation; delimitation; fl oral organ 
primordia positioning that depends on fundamentally on auxins; 
primordia number; inter-whorl and within-whorl boundaries; and 
primordia and organ adaxial-abaxial polarity (Figures 2C and 15; 
Irish, 2008). At later stages of fl oral organ development, subcellu-
lar differentiation and patterning, as well as overall organogenesis 
takes place and more specifi c regulatory modules are involved. 
The genes within such modules are treated separately for each 
organ type (Figures 16-17). 

As a precursor to integrating GRN modules in the above cate-
gories, we now provide a synthesis of the molecular genetic stud-
ies of how such generic developmental processes are regulated. 
Several of these have also been identifi ed as important regulators 
of leaf development, substantiating the proposal of Goethe that all 
plant organs are elaborations or modifi cations of a core leaf-like 
developmental program (for review of common pathways see Sa-
blowski, 2009). ABC fl oral organ identity genes are also important 
in fi ne-tuning or coordinating the role of genes involved in some 
of the generic developmental modules during fl ower development 
(Figure 15; Sablowski, 2009). Some genes participate in more 
than one process or module and are important for making con-
nections between different GRN modules. In such cases, they are 
considered in more than one category. 

Regulatory modules controlling distinct components of fl oral 
organ development have been elucidated to different extents de-
pending on available mutant phenotypes. In correlation with ana-
tomical and morphological complexity, the size and complexity of 
the regulatory modules underlying stamen and carpel develop-
ment are much greater than those that regulate sepal or petal 
development. Carpel development is covered in the “Fruit Devel-
opment” chapter (Roeder and Yanofsky, 2006) in this book, and is 
only briefl y considered here. 

In the fl ower meristem, normal organogenesis depends upon 
a homeostatic equilibrium between stem cell specifi cation and 
cellular differentiation (Green et al., 2005). Plant morphogenesis 
is infl uenced both by the orientation and rate of cell division, as 
well as by cell expansion and differentiation (see section 2 for 
a description of fl oral organ initiation and morphogenesis). How 
the molecular aspects of these processes are coordinated has 
been very diffi cult to elucidate. However, it is generally accepted 
that cells in meristematic regions respond to positional informa-
tion important for inducing and controlling morphogenesis (Sus-
sex, 1954; 1955; Meyerowitz 1997; Hauser et al., 1998). One of 
these positional signals is auxin (see Section 3.4.1; Reinhardt 
et al., 2000; Benková et al., 2003; Reinhardt et al., 2003; de 
Reuille et al., 2006). Several mutations that affect the number, 
size, and/or shape of one or several fl oral organs have also been 
characterized. Some of these phenotypes are pleiotropic conse-
quences of mutations in genes acting from earlier steps of plant 
and fl ower development. Others are the result of alterations in 
organ specifi c genes (Figures 16-17). An extensive list of genes 
involved in fl ower organ morphogenesis with their inferred func-
tions, mutant phenotypes and mRNA expression patterns is 
given in Table S1. 

3.4.1. Floral meristem and organ primordia positioning: the 
role of auxin 

The shoot apical meristem produces leaves and then fl owers in 
a highly predictable and regular phyllotactic pattern (Tanaka et 
al., 2006). One of the key compounds that regulate this devel-
opmental process is the hormone auxin (Reinhardt et al., 2000). 
Increased auxin levels mark the initiation sites for organ primordia 
(including those of fl oral organs) and local application of auxin 
is suffi cient to trigger leaf or fl ower formation in the shoot apex 
(Reinhardt et al., 2000; Tanaka et al., 2006). Once the primordium 
is established, there is a depletion of auxin around it and another 
peak of auxin is only able to form in cells at a specifi c distance 
from pre-existing primordia, generating a phyllotactic pattern (Re-
inhardt et al., 2000; Reinhardt et al., 2003; de Reuille et al., 2006; 
Tanaka et al., 2006; Berleth et al., 2007; Kuhlemeier, 2007). After 
initiation, the primordium grows by cell proliferation and cell ex-
pansion, and the organ differentiates along the apical-basal and 
dorsal-ventral axes (Heisler et al., 2005; Golz, 2006). 

The overall distribution of auxin depends on its biosynthesis, 
metabolism, and directional transport. Most auxin is synthesized 
in young tissues of the shoot and distributed throughout the plant 
by two physiologically distinct pathways. One of them is passive 
and occurs only by diffusion through the mature phloem. The oth-
er one is an active polar auxin transport (called PAT) that medi-
ates cell-to-cell movement of auxin through two different types of 
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Figure 15. Functional gene regulatory modules during early fl ower development.

Common molecular modules act during early meristem morphogenesis from the SAM both before and after reproduction. During fl oral organogenesis, 
these modules interact among themselves and with the FOS-GRN that includes the fl oral homeotic genes. Anlagen positioning in the SAM fl anks depends 
on auxin gradients. Transport and signal transduction proteins, as well as other factors regulated by auxins (letters in blue), participate in the establish-
ment of such gradients and fi nally determining the position of primordia. The auxin pathway also downregulates some members of the NAC family (CUC1
to 3 are important for organ boundary establishment), which also participate in the positive regulation of STM and KNOX genes. Since WUS maintains 
the apical meristem stem cells in a proliferating state with CLV proteins that in turn regulate its expression in a non cell-autonomous negative-positive 
feedback loop, and STM prevents meristem cell differentiation by inducing the production of cytokinins (CK) and the ARR transduction pathway (see text), 
fl oral primordia may emerge if cells in the anlagen are able to downregulate STM. This can be achieved by the action of AS1 and ANT. Upregulation of 
LFY by the fl owering genes (Section 3.2; Figure 9) in conjunction with some KAN and YAB proteins, activate the expression of ABC homeotic genes (in 
red) for the establishment of the fl oral organ primordia identity and growth (gene acronyms in black, see text and Table S1 for full names). Lateral organ 
primordia acquire apical/basal, lateral/medial and adaxial/abaxial polarities by the action of protein families that include PHABs (PHB, PHV and REV), 
KANs (KANADI1-3, ATS/KAN4), YABs (FIL/YAB1, YAB2, YAB3, INO/YAB4, YAB5 and CRC/YAB6), JAG and NUB (letters in green). Some of these are 
organ-specifi c while others are shared by different fl oral organ primordia (see section 3.4). Not all the genes involved in each module are depicted, just 
some of the most representative ones, which help us to understand how they are interconnected. Arrows and bars indicate positive and negative regulatory 
interactions, respectively, and dashed lines a postulated interaction not yet proven. The text color used for the gene names in each module is the same as 
in Figures 16, 17, and 19 where specifi c organ developmental processes are summarized and the ABC genes are shown in boxes on the organ specifi ed 
as in the model shown below. Hormones are in purple. 
This fi gure was composed partially from information in Clark (2001b), Blazquez et al. (2006), Hord et al. (2006), Shani et al. (2006) and Feng and 
Dickinson (2007).
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proteins, effl ux and infl ux carriers. Some of the genes that encode 
these transporters (or carriers) have been cloned: PIN-FORMED
(PIN) and P-GLYCOPROTEINS (ABCB/PGP) for auxin effl ux, 
and AUXIN1 (AUX1) and its paralogs LIKE-AUX1 (LAX1-3) for 
auxin uptake/infl ux (Figure 15; Bennett et al., 1996; Friml, 2003; 
Yang et al., 2006; Bandyopadhyay et al., 2007).

The PIN gene family encodes eight protein members in total; 
three of them (PIN5, 6, and 8) of unknown function. All of the PIN 
proteins characterized until now are asymmetrically distributed on 
the plasma membrane and some of them can be found in specifi c 
cell types with no pronounced polarity (Vieten et al., 2007). The 
direction of auxin fl ow is believed to be determined by the asym-
metric cellular localization of PIN proteins (Friml, 2003). The fi rst 
of these proteins to be characterized was PIN1, and its mutation 
(pin1) results in pin-shaped infl orescence meristems without fl ow-

ers. PIN1 expression is induced by auxin and it encodes a protein 
with 10-12 putative transmembrane domains and shares some 
similarity with bacterial transporters (Gälweiler et al., 1998). pin1
mutant plants accumulate high amounts of auxin in vegetative 
meristems and a defi ciency in the apical infl orescence meristem, 
which results in a defective organ initiation of leaves and fl owers, 
a phenotype that can be imitated in wild type using auxin effl ux 
inhibitors (Okada et al., 1991; Reinhardt et al., 2000). Of the other 
PIN proteins, only pin3 and pin7 loss-of-function mutants have 
fl owers, and these bear fused petals, no stamens, and occasion-
ally no sepals (Benková et al., 2003). PIN3 is essentially involved 
in mediating differential shoot growth (Friml et al., 2002) and PIN7
is important during early embryo development (Friml et al., 2003).

Auxin movement mediated by PIN carrier proteins determines 
the growth axis of the developing organ by establishing an auxin 
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Figure 16. Main stages of petal development and some genes involved.

Schemes at the top illustrate three different stages of petal development (for details see section 2). Briefl y, GRN modules (genes) in petal development 
include those involved in the establishment of the second whorl domain, the specifi cation of petal identity and cell differentiation. CUC genes under the 
regulation of miR164c are involved in establishing whorl boundaries. Genes involved in polarity determination like JAG, PHB and YAB1 are also necessary 
for petal development. A, B and SEP genes, and the absence of C genes, determine petal identity (AP2 and SEP genes are not shown here for clarity; 
see Figures 11 and 14). Petal blades are formed by active cell division at early developmental stages and by cell enlargement and differentiation at later 
stages. Some of the genes expressed early need to be continuously expressed throughout petal growth, including ROXY1, SEU, and LUG. Downregulation 
of the GNC, GNL, and HXK1 genes inhibits chlorophyll accumulation and expression of photosynthetic genes. At4g30270 might be necessary for correct 
cell wall dynamics during petal growth (see text section 3.4.5 and Table S1 for details; Franks et al., 2006; Irish, 2008;). Gene color code as in Figure 15; 
arrows and bars indicate positive and negative regulatory interactions, respectively.
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Figure 17. Stages of stamen development with emphasis on the genes implicated in anther formation. 

Schemes of some stages of fl ower development showing representative stages of anther cell differentiation (Sanders et al., 1999) are shown at the top. 
At stage 1 of anther development and microspore formation, rounded stamen primordia emerge with three cell layers, L1, L2 and L3. During stage 2, the 
archesporial cells (Ar) arise in the four “corners” of the L2 layer and the epidermis in the L1. Before meiosis the Ar cells divide and generate the primary 
parietal layer (1oP) and the primary sporogenous layer (1oSp). The 1oP then divides into two secondary parietal layers (outer and inner, 2oP). The outer 
layer gives rise to the endothecium, the inner cells to the middle layer and the tapetum. 1oSp produces the microspore mother cell (MMC) that undergoes 
meiosis and gives rise to the microspores (Alves-Ferreira et al., 2007). At stage 7, meiosis is completed and the four locules carrying tetrads (Tds) of 
microspores are seen. At stage 14, cells shrink and the anther dehisces liberating the pollen grains (PG; Sanders et al., 1999). Some of the known genetic 
interactions important during anther development are shown in purple. AG (in red) induces the expression of SPL (the fi rst gene known to be committed to 
anther development); later during microsporangium formation the action of the EMS, DYT, MS1 and AMS genes is also indispensable (Feng and Dickinson, 
2007). See section 3.4.6 for further explanation and Figure 15 for gene color code. Arrows and bars indicate positive and negative regulatory interactions, 
respectively, and dashed lines possible indirect interactions.

gradient with its maximum at the tip (Benková et al., 2003; Tanaka 
et al., 2006). As the primordium rapidly expands, auxin is depleted 
from the tip. Two hypotheses have been proposed to explain this 
observation: either auxin is transported through the primordium 
interior into the vascular network (Benková et al., 2003; Tanaka 
et al., 2006) or it is depleted from primordial regions as a result of 
specifi c reversals in PIN1 polarity (Heisler et al., 2005).

The ABCB/PGPs are also transmembrane proteins that be-
long to the ATP-binding cassette (ABC) transporter superfamily. 
In Arabidopsis, three of their members, ABCB1, ABCB4, and 
ABCB9, are able to transport auxin away from apical tissues and 

are important in maintaining long-distance auxin transport (Ti-
tapiwatanakun et al., 2009). One of the PGP proteins (PGP19) 
co-localizes and interacts with PIN1 and the ABCB protein is ap-
parently important in stabilizing plasma membrane microdomains 
necessary for enhanced PIN1 activity (Bandyopadhyay et al., 
2007; Titapiwatanakun et al., 2009).

Auxin enters the cell passively by simple diffusion and also by 
the import activity of AUX1 and related LAX proteins. The AUX1
gene encodes a protein with 11 putative transmembrane domains 
(Hobbie, 2006) similar to plant amino acid permeases (Bennett 
et al., 1996). The mutant form (aux1) was identifi ed in a screen 
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for auxin resistant and agravitropic mutants (Bennett et al., 1996; 
Vieten et al., 2007). The AUX1 protein also has polar subcellular 
localization in some cells and co-localizes with PIN1 in the shoot 
apical meristem. AUX1/LAX function could be essential for stabi-
lizing the phyllotactic pattern. The proposed model for AUX1/LAX 
function is that these proteins concentrate auxin in the cytoplasm 
of cells of the L1 layer, preventing auxin diffusion in the apoplast 
(Bainbridge et al., 2008).

PINOID (PID) encodes a Ser/Thr protein kinase (Christensen 
et al., 2000) which has been implicated to function in redirecting 
subcellular PIN polarities, because the loss of its activity causes 
a shift in apical-basal PIN polarity (Friml et al., 2004; Berleth et 
al., 2007; Michniewicz et al., 2007). pid mutants have a defect in 
organ formation similar to that of pin1, but they do produce a few 
fl owers (Reinhardt et al., 2003) with altered fl oral organ numbers 
(more petals but fewer stamens) (Bennett et al., 1995). Recently, 
Michniewicz et al., (2007) reported that in vivo PIN1 phosphoryla-
tion is directly dependent on the kinase PID and a phosphatase
PP2A, which may act directly by dephosphorylating PIN1 or in-
directly through PID. This phosphorylation status determines the 
intracellular apical-basal localization of PIN1 and therefore auxin 
transport-dependent development. PIN1 is targeted to the apex 
when it is phosphorylated and to the base when it is dephos-
phorylated (Michniewicz et al., 2007; Vieten et al., 2007).

Accumulation of auxin activates downstream processes 
through specifi c receptors and the combinatorial action of mem-
bers of two large families of transcription factors, AUXIN RE-
SPONSE FACTORS (ARF) and IAA/AUX (Kuhlemeier, 2007). 
The Aux/IAA proteins are degraded when the levels of free auxin 
rise, resulting in derepression of ARFs. ETTIN (ETT)/ARF3 has a 
dynamic role in patterning by acting in specifi c cells within fl oral 
meristems and reproductive organs. At early stages, ETT func-
tions in determining the number of organ primordia, whereas later 
it is involved in the outgrowth and patterning of tissues within or-
gan primordia (Figure 15; Sessions et al., 1997). ett mutant plants 
show altered fl ower development; some fl owers have missing pet-
als and rudimentary radialized stamens, and others have normal 
fertile stamens, but radialized petals (Pekker et al., 2005). ETT is 
also involved in prepatterning apical and basal boundaries in the 
gynoecium primordium (see Table S1; Sessions and Zambryski, 
1995; Sessions et al., 1997). MONOPTEROS (MP)/ARF5 mu-
tants (mp) have infl orescences with smaller or absent fl owers, 
similar to pin1 mutants (Przemeck et al., 1996).

3.4.2. Floral organ primordia number, size, and boundaries

In Arabidopsis, which is a self-fertilizing (autogamous) and par-
tially cleistogamous (before fl ower bud opens) plant, fl oral organ 
size might not be under strong evolutionary pressure compared 
to allogamous species. However, it has been an important model 
to study genes that control size and architectural traits of fl owers 
(Weiss et al., 2005).

Several mutations that affect meristem size and maintenance 
lead to alterations in fl ower organ number or size. Mutations in 
the CLV genes (Clark et al., 1993 and 1995; Kayes and Clark, 
1998) cause an increase in meristem size, thus yielding addi-
tional whorls and a change in fl oral organ number with altered 
phyllotaxis (Clark et al., 1993; Clark et al., 1997; Fletcher et al., 

1999; Brand et al., 2000; Doerner, 2000). Mutations in genes that 
control cell proliferation in the SAM, such as the CLV genes, are 
similar to ULT in that they have larger SAM and primordia (Fletch-
er, 2001; Carles et al., 2004) and WIGGUM (WIG; Running et al., 
1998). 

When WUS is repressed and the number of cells for fl oral pri-
mordia formation is reduced, organ architecture is compromised 
suggesting that there is a threshold number of cells required to 
form a normal organ (Weiss et al., 2005). In fact, the loss of or-
gans observed in A-function mutants, or any other AG repressor 
mutant could be explained as a result of premature repression 
of WUS by AG in these organs (Crone and Lord, 1994; Liu and 
Meyerowitz, 1995; Laux et al., 1996).

Other mutants that have altered fl oral organ numbers are pan
(Running and Meyerowitz, 1996; Chuang et al., 1999), ett (Ses-
sions et al., 1997) and sup (Jacobsen and Meyerowitz, 1997). 
Both pan and ett have more sepals and petals and fewer sta-
mens, whereas sup produces more stamens at the expense of 
carpels (Weiss et al., 2005). Double pan sup mutants however 
have an attenuated sup phenotype in the fourth whorl, probably 
because in this mutant AG is downregulated and the domain of 
expression of WUS is expanded (Das et al., 2009). 

The PAN gene mutation specifi cally alters fl oral organ num-
ber, yielding fertile plants with a pentamerous meristic pattern 
(Running and Meyerowitz, 1996). PAN encodes a member of 
the bZIP class of transcriptional regulators (Chuang et al., 1999) 
and is thought to act in the process by which cells assess their 
position within the developing fl oral meristem. This gene may 
affect the switch that commits fl oral organ primordia cells to en-
ter an organ initiation program (Running and Meyerowitz, 1996). 
PAN and WUS expression overlaps and in clv mutants both 
genes are ectopically expressed (Chuang et al., 1999; Maier et 
al., 2009). WUS overexpression causes PAN overexpansion too 
suggesting that this gene is positively regulated by WUS (Maier 
et al., 2009). 

Interestingly, pentameric symmetry is characteristic of fl ow-
ers in early-diverging angiosperm lineages, thus suggesting that 
PAN may have been involved in changes to meristic patterns 
during angiosperm diversifi cation; particularly the evolution from 
pentamerous to tetramerous fl owers in the Brassicaceae lineage 
(Chuang et al., 1999). 

Organ size is also regulated by the same components in all 
whorls. The ANT gene encodes a transcription factor of the AP2 
family, which seems to be a general regulator of organ size during 
organogenesis (Elliott et al., 1996; Klucher et al., 1996; Krizek, 
1999; Krizek et al., 2000; Mizukami and Fischer, 2000). The over-
expression of ANT causes increased cell division in sepals and 
increased cell expansion in the inner three whorls, probably af-
fecting both the rate and duration of cell divisions which are im-
portant determinants of the fi nal size of lateral organs (Krizek, 
1999; Mizukami and Fischer, 2000; Weiss et al., 2005). ARGOS
participates in the same transduction pathway as ANT and acts 
downstream of AUXIN RESISTANT 1 (AXR1). Interestingly, in-
creased organ size observed in ARGOS overexpression lines is 
due to an extended period of cell division rather than to an in-
crease in growth rate (Hu et al., 2003; Weiss et al., 2005). So, it is 
plausible to assume that these two genes (and probably others) 
affect organ size by transducing signals from plant growth regu-
lators, such as auxin, which is a key player in establishing SAM 
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primordia and a general regulator of cell proliferation and expan-
sion (Figure 15). 

ANT also participates in defi ning abaxial-adaxial organ polar-
ity in combination with FILAMENTOUS FLOWER/YABBY1 (FIL/
YAB1; Nole-Wilson and Krizek, 2006; see next section) and thus 
may be one of the links between the modules controlling primor-
dia growth and the polarity establishment (Figure 15). 

Ectopic expression of UFO (Levin and Meyerowitz, 1995) 
also causes increased fl oral organ size (Lee et al., 1997), due 
to increased cell division (Mizukami, 2001; Weiss et al., 2005). 
This pathway is regulated by UFO independently of its role in B 
gene expression, because ectopic expression of the B genes 
does not induce any increase in organ size, so missexpression 
of other unknown UFO-dependent factors may account for this 
phenotype (Ni et al., 2004). UFO and two gene enhancers of the 
ufo- phenotype, FUSED FLORAL ORGANS 1 and 3 (FFO1 and
FFO3), could also participate in establishing and maintaining or-
gan boundaries probably by affecting cell proliferation (Levin et 
al., 1998).

Morphological boundaries are established in the early stages 
of the formation of a primordium separating it from surrounding 
tissues, and later from adjacent organ primordia (Figure 2C; Aida 
and Tasaka, 2006a). Cells in the boundary are distinctly narrow 
and elongated with low proliferation rates (Aida and Tasaka, 
2006b). Genes expressed in the boundary may affect both meri-
stem and organ development by upregulating cell differentiation 
genes and downregulating meristematic genes (Borghi et al., 
2007). CUC1, 2, and 3 encode NAC-domain transcription factors 
that promote morphological separation of lateral organs through 
growth repression (Aida et al., 1997; Vroemen et al., 2003; Taoka 
et al., 2004). cuc1 cuc2 double mutant seedlings have fused coty-
ledons with no shoots. However, when adventitious stems are in-
duced in this genotype, fl owers have fused sepals and stamens, 
fewer petals and stamens number, and reduced fertility (Aida et 
al., 1997). CUC genes are epigenetically regulated (Laufs et al., 
2004; Kwon et al., 2006). 

Other genes, such as LATERAL ORGAN BOUNDARY (LOB)
and JAGGED LATERAL ORGANS (JLO), members of the LAT-
ERAL ORGAN BOUNDARY DOMAIN (LBD) gene family, encode 
putative transcription factors with a leucine-zipper motif that are 
also expressed in boundary cells (Shuai et al., 2002; Borghi et al., 
2007). JLO along with the CUC genes probably coordinate auxin 
accumulation and loss of meristem-specifi c gene expression in 
organ anlagen (Takada et al., 2001; Borghi et al., 2007).

3.4.3. Floral organ polarity

Establishing organ polarity is an important aspect of morphogen-
esis and it is sometimes clearly associated with specifi c functions 
of plant organs. Both, adaxial-abaxial and proximal-distal polari-
ties are regulated by genetic circuits that are similar for all lateral 
organs (Figure 2C; Feng and Dickinson, 2007), although each or-
gan type has distinct cell types and morphogenesis in the abaxial 
versus adaxial surfaces, and in the proximal versus distal regions 
(Figures 2C and 8). Organ polarity is also linked to the establish-
ment of hormone gradients. 

Briefl y, abaxial fate is conferred by members of the YABBY
family (Sawa et al., 1999; Siegfried et al., 1999) and by some of 

the KANADI genes (Eshed et al., 2001; Kerstetter et al., 2001), 
whereas adaxial cell fate is determined by members of the PHAB
family: REVOLUTA (REV), PHABULOSA (PHB), and PHAVOLU-
TA (PHV) (McConnell et al., 2001; Emery et al., 2003; reviewed in 
Bowman et al., 2002; Zik and Irish, 2003b; Golz, 2006) together 
with JAGGED (JAG) and NUBBIN (NUB) (Figure 15; Dinneny et 
al., 2004; Dinneny et al., 2006). 

YABBY proteins (YAB) are transcription factors with a Zn-fi n-
ger and a helix-loop-helix (YABBY) domain that are promoters 
of abaxial cell fate in all lateral organs, among other functions 
(Bowman 1999; Sawa et al., 1999; Siegfried et al., 1999). Dur-
ing fl ower development they participate in establishing the pri-
mordium domain and meristem patterns, and later in maintaining 
abaxial polarity (Siegfried et al., 1999; Goldshmidt et al., 2008). 
FIL/YAB1, YAB2, and YAB3 are expressed in a polar manner in all 
lateral organs of the fl ower meristem, while CRABS CLAW (CRC/
YAB6) is only expressed in carpels and nectaries, and INNER
NO OUTER (INO/YAB4) is restricted to outer integuments (see 
section 3.4.6 and 3.4.7; Alvarez and Smyth, 1999; Bowman and 
Smyth, 1999; Villanueva et al., 1999). 

KANADI (KAN) genes encode transcription factors of the 
GARP family. KAN1, KAN2, and KAN3 have been implicated in 
promoting abaxial cell fates (Eshed et al., 1999; Eshed et al., 
2001; Kerstetter et al., 2001). The kan1 mutant was selected as 
a genetic enhancer of crc gynoecium phenotype, producing a 
mirror-image of adaxial tissues in the kan1 crc double mutant, 
indicating that both genes participate in a redundant manner to 
promote abaxial identity (Eshed et al., 1999). In kan1 kan2 double 
mutants, all fl oral organs are also extremely adaxialized (Eshed 
et al., 2001; Kerstetter et al 2001). Although these KAN genes are 
not necessary for the activation of YAB genes, they are important 
in controling their proper abaxial localization (Eshed et al., 2001). 
Even though KAN and YAB genes may have common targets, 
they also have different ones, since the phenotype of the fi l yab3 
double mutant is not quite the same as the extreme phenotype of
kan1 kan2 (Bowman et al., 2002).

It has been hypothesized that the “default” state of cells is the 
abaxial fate (Sussex 1954, 1955). Genes that belong to the PHAB
family (class III homeodomain-leucine zipper, HD-ZIP III; Sessa 
et al., 1998; McConnell et al., 2001; Golz, 2006) of transcrip-
tion factors, like PHB and PHV, might be activated by a proxi-
mal signal coming from the apical meristem. These cells that are 
programmed to yield the adaxial portion of the lateral organ, are 
predicted to in turn haveYAB and KAN genes repressed (Bow-
man et al., 2002). In this respect, semidominant gain-of-function 
mutants of PHB and PHV genes cause adaxialization of lateral 
organs (McConnell and Barton, 1998; McConnell et al., 2001). 
PHB, PHV, and REV have similar expression patterns. They are 
expressed in the SAM initiating lateral organs and later become 
adaxially restricted as the primordium emerges (McConnell et 
al., 2001; Otsuga et al., 2001; Prigge et al., 2005). Finally, phe-
notypes of the loss-of-function rev mutants could be interpreted 
as having a partial loss of adaxial identity (Talbert et al., 1995; 
Otsuga et al., 2001).

Besides the PHAB function in polarity, it is also interesting to 
note that a phb phv cna (corona, another member of the HD-
ZIP III gene family) triple mutant has a very similar phenotype 
to those of clv mutants with a distinct increase in organ number 
in each whorl. This would suggest that HD-ZIP III genes and the 
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CLV pathway regulate meristem function in a similar manner. The 
possible interrelation of these modules could contribute to ho-
meostasis between stem cell maintenance and organ formation 
(Prigge et al., 2005). 

NUB and JAG are similar genes which encode C2H2-zinc 
fi nger transcription factors that are proposed to play redundant 
functions in proliferation and differentiation of adaxial cells, par-
ticularly during anther and carpel development (Dinneny et al., 
2004; Ohno et al., 2004; Dinneny et al., 2006; Xu et al., 2008).
They specifi cally work together in determining the number of cell 
layers formed in fl oral organs, and like the PHAB family, they are 
not cell-fate genes. Hypothetically, JAG suppresses the prema-
ture differentiation of tissues by slowing down the cessation of 
cell division in distal regions of organs until it fi nally arrests after 
normal morphogenesis has occurred (Dinneny et al., 2004). 

AS1 and AS2 have redundant functions in the establishment 
of adaxial identity (Ori et al., 2000; Sun et al., 2000; Semiarti et 
al., 2001). AS1 encodes a MYB-domain transcription factor, and 
AS2 is a member of the LBD gene family (Serrano-Cartagena 
et al., 1999; Byrne et al., 2000; Semiarti et al., 2001; Sun et al., 
2002). AS1 protein is expressed in organ initials and physically 
interacts with AS2 to inhibit KNOX gene expression, thus guiding 
primordia toward differentiation (Figure 15; Ori et al., 2000; Byrne 
et al., 2002; Xu et al., 2003; Guo et al., 2008). 

Other reviews on polarity determination in embryos and in 
leaves are found in other chapters in this series: “Embryogenesis: 
pattern formation from a single cell” (Berleth and Chatfi eld, 2002) 
and “Leaf development” (Tsukaya, 2002).

3.4.4 Sepals and petals

Sepals and petals constitute the sterile perianth in the fi rst and 
second fl ower whorls, respectively. The sepal whorl or calyx pro-
tects the developing fl oral bud and in some plants, but not in Ara-
bidopsis, it may be involved in fruit development (He et al., 2004). 
The petal whorl or corolla is generally thought to be important for 
attracting pollinators (Krizek and Fletcher, 2005), but in an au-
togamous plant such as Arabidopsis, the corolla is generally not 
showy. 

According to the ABC model, sepal identity specifi cation de-
pends on the activity of both A and SEP genes (see section 3.3; 
Coen and Meyerowitz, 1991; Pelaz et al., 2000), and petal identity 
specifi cation depends on the overlapping activities of A, B and 
SEP genes (see section 3.3; Coen and Meyerowitz, 1991; Pelaz 
et al., 2000). Also, it has been shown that sepal and petal identity 
specifi cation depends, at least in part, on the correct downregula-
tion of AG expression in the second whorl (see below).

Several molecular components known to infl uence develop-
ment of sepals, infl uence petals too. But knowledge is still lim-
ited especially of sepal developmental gene networks. However, 
a basic GRN for petal development can be constructed based on 
available data (Figure 16). As stated earlier, organ identity deter-
mination, boundary establishment, and expression of polarity de-
terminants are common features needed for the correct develop-
ment of all the fl ower organs (Figure 15). There are several pieces 
of evidence that suggest that genes involved in these processes 
might be acting at the same time (for example, expression pro-
fi les and in situ hybridization assays), at least momentarily during 

fl ower development. However, we still do not understand fully how 
such functional modules interact with each other.

As it was said before sepal and petal boundary and organ 
number establishment are controlled by the CUC and FFO2
genes (see Figure 16 and section 3.4.2; Aida et al., 1997; Levin 
et al., 1998). CUC gene expression is regulated by the miR164c 
(encoded by EEP1) in an organ specifi c manner (Laufs et al., 
2004; Baker et al., 2005).

Several genes are involved in establishing and maintaining the 
sepal and/or petal domain and, in a way, determining the bound-
aries between the organs. One of the main activities of these 
genes is to exclude AG expression from the fi rst and second 
whorl. As stated in section 3.3, AG is repressed by RBE, LUG,
SEU, ROXY1, AP2, BLR, ANT and SAP (for more information 
about each gene, see Table S1; Figures 15 and 16). 

Briefl y, RBE is mainly involved in boundary and organ number 
determination of both sepals (non-autonomously) and petals, and 
in AG exclusion from the second whorl at early stages of fl ower 
organ development. But it is also important during late petal de-
velopment as mutants may form fi lamentous organs in the second 
whorl. RBE expression is controlled by both PTL and UFO (Takeda 
et al., 2004; Krizek et al., 2006). PTL is a trihelix transcription fac-
tor that is expressed at early stages in four zones between the 
initiating sepal primordia and in lateral regions of stamen primor-
dial. Later on, PTL expression can be detected at the margins of 
expanding sepals, petals, and stamens (Brewer et al., 2004). Thus 
PTL may delimit the AG expression region indirectly by activating
RBE expression (Irish, 2008), and it may also be controlling lateral 
outgrowth of mature sepals, petals and stamens defi ning their fi nal 
shape and orientation (Griffi th et al, 1999; Brewer et al., 2004). 

UFO is also an important regulator of petal development. Its 
action toward RBE may be indirect, as it may be degrading (as 
part of an SCF E3 ubiquitin ligase complex) an unknown repres-
sor of RBE (Irish, 2008). But UFO is an important network link 
between the AG inactivation pathway and the B gene identity de-
termination pathway, because UFO interacts with LFY to activate 
AP3 expression (See section 3.3; Lee et al., 1997; Samach et 
al., 1999; Chae et al., 2008). Importantly, UFO expression is also 
required for normal petal blade outgrowth after petal identity has 
been established (Laufs et al., 2003), as well as for determination 
of sepal shape and number in the fi rst whorl (Levin and Meyerow-
itz, 1995; Samach et al., 1999).

SEU and LUG also repress AG expression in the fi rst and sec-
ond whorls by forming a protein complex with AP1 and SEP3 (see 
section 3.3; Sridhar et al., 2004; Sridhar et al., 2006). But these 
genes are also part of the adaxial/abaxial polarity establishment 
pathway in the petal GRN, as they are required for normal PHB
and FIL expression (Figure 15). SEU and LUG participate in petal 
shape regulation by controlling blade cell number and petal vas-
culature development in an AG independent manner (Franks et al, 
2006). Finally, SEU is also involved in auxin response pathways 
by directly interacting with ETT, and infl uencing the fi nal shape, 
number and phyllotaxy of petals (Pfl uger and Zambryski, 2004).

As part of the regulatory network that represses AG expres-
sion, AP2 is itself negatively regulated by miR172 when second 
whorl boundaries are determined (Chen, 2004; Zhao et al., 2007). 
Besides being a negative regulator of AG, ANT also affects organ 
number and morphology in the fi rst three whorls (Elliott et al., 
1996; Klucher et al., 1996). SAP, another regulator of the mor-
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phology of all organs, but mostly of petals, is unexpectedly more 
important in later fl owers (Byzova et al., 1999).

Another important indirect repressor of AG is ROXY1. As a 
glutaredoxin, ROXY1 seems to be a postranslational modifi er of 
AP2, LUG, UFO and RBE giving them the specifi city to repress 
AG in the second whorl (Xing et al., 2005; Irish, 2008). ROXY1 
is also important for repressing PAN expression and for activat-
ing other TGA factors at different stages of petal development 
(Li et al., 2009).

Genes that usually work in the establishment of lateral organ 
polarity (see section 3.4.3) are also important in determining the 
polarity of sepals and petals, e.g. PHB, JAG, FIL, YAB3, KAN,
AS1 and AS2 (Figure 16). Experimental data suggest that AS1, 
AS2 and JAG are negative regulators of CUC1/2 and PLT (Xu et 
al., 2008). This links the expression of these genes with those 
important for boundary determination in the GRN of both sepals 
and petals. PHB and FIL expression are also part of the network 
and are regulated by SEU and LUG (Franks et al., 2006). Lateral-
axis dependent development is determined by the PRESSED
FLOWER (PRS) homeobox gene (Matsumoto and Okada, 2001). 
As with some other genes involved, its position in the GRN is 
unknown, but by analyzing the mutant phenotypes, it becomes 
clear that the same regulatory modules that underlie polarity de-
termination are involved in organ shape regulation.

In Arabidopsis, as in other plants, several mutants featuring a 
foliose-sepal-syndrome (FSS) (leaf-like sepals) have been isolat-
ed. Ectopic expression of the MADS-box genes AGL24, SVP, and 
ZMM19 (from Zea mays), belonging to the STMADS11-clade (ac-
cording to Theissen et al., 2000), result in FSS (He et al., 2004). 
The main feature of these leaf-like sepals is that they are large 
and have leaf-like stellate trichomes on their outer surface. One 
of the characteristics of ap1 mutant plants is that they also have 
large or foliose sepals. Thus, it has been proposed that, in addi-
tion to their roles in fl oral transition and/or organ determination, 
AP1, SVP, and AGL24 may also have a role regulating sepal size 
(He et al., 2004). But how they interact among themselves or with 
other sepal specifi c genes is still unknown.

Final sepal and/or petal morphology is also determined by 
FRL1 (Hase et al., 2000; Hase et al., 2005), TSO1 (Hauser et 
al., 1998), the AP3/PI regulated genes GNC, GNL, At4g30270,
HXK1 (Mara and Irish, 2008), and NAP (Sablowski and Meyerow-
itz, 1998). Except for FRL1, which is involved in endoreduplication 
control, and TSO1, which is likely involved in chromatin remodel-
ling, the position of these genes in the petal GRN has already 
been established (see Figure 16).

Using microarray approaches Wellmer et al. (2004), compared 
gene expression levels within different fl oral homeotic mutants 
(see section 3.3.1). Their fi rst study of stage 2 fl owers identi-
fi ed only 13 genes as being sepal-specifi c and only 18 genes 
expressed exclusively (or predominantly) in petals. However, a 
more recent study of fl owers at stage 3, when sepal primordia 
have just formed, revealed that 199 genes are upregulated and 
161 genes downregulated (Figures 3-4; Wellmer et al., 2006). 
One speculation is that sepals are relatively simple organs and 
not many specifi c genes are involved in their development. But 
more detailed studies are still required. Results also suggest that 
genes regulating sepal and petal development may have been 
recruited from leaf developmental pathways, and, hence, are not 
specifi c for the development of these organs.

Petals have been proposed as an excellent model system in 
which to study development because they have a simple orga-
nization and are not essential for survival or reproduction (Irish, 
2008). Although much progress has been made, much work is still 
needed for an integrated and dynamical understanding of petal 
development.

3.4.5 Stamens

Six stamens occupy the third whorl in the Arabidopsis fl ower. Sta-
men specifi cation depends on the overlapping activities of B, C and 
SEP MADS-box genes (Coen and Meyerowitz, 1991; Pelaz et al., 
2000). A complex network of gene regulatory modules is simulta-
neously activated in young stamen primordia, and these are also 
important for organ morphogenesis (Figure 15). These modules in-
clude those that regulate adaxial-abaxial primordium polarity (also 
affecting other vegetative and reproductive lateral organs) including 
genes from the PHAB (PHB, PHV, and REV), KANADI (KAN1-4), 
and YABBY (FIL/YAB1, YAB2, and YAB3) families. At later stages of 
stamen development, genes involved in sporogenesis such as SPL 
and BAM1/2, and in anther development, such as JAG and NUB,
are activated (see Figures 15 and 17 for regulatory modules and 
genes; Scott et al., 2004; Ma, 2005; Feng and Dickinson, 2007). 

Among the most striking stamen development mutants is fi l 
(also called antherless and undeveloped anther) which bears 
normal fi laments with neither anthers nor pollen. The FIL gene is 
YABBY-like and the fi l phenotype suggests that the developmen-
tal programs of the fi lament and anther are controlled by indepen-
dent regulatory modules (Sanders et al., 1999).

As mentioned in section 3.3.1, SPL/NZZ is essential for male 
and female reproductive development and is probably the fi rst 
reproductive gene to be activated in the anther or, at least, it is 
the only gene that remains active during most of early anther 
development. This transcription factor gene is expressed during 
micro- and megasporogenesis. AG directly induces SPL but AG
is not necessary for maintaining its expression (Ito et al., 2004). 
spl mutants are not able to produce microsporogenous cells or 
tapetal tissue, and show several alterations in anther wall and nu-
cellus development (Schiefthaler et al., 1999; Yang et al., 1999). 
Interestingly, BAM1 and BAM2, which participate in the fi rst cell 
division of the archesporial cells and the subsequent periclinal 
divisions to produce the somatic cell layers, are proposed to form 
a regulatory loop with SPL (Figure 17; Hord et al., 2006; Feng and 
Dickinson, 2007). Since SPL maintains the sporogenous activity 
in the microsporogenous cells, and BAM1/2 maintain somatic dif-
ferentiation, bam1 bam2 anthers have cells interior to the epider-
mis with characteristics of pollen mother cells (Hord et al., 2006).

Although SPL is one of the genes expressed the earliest in 
stamen development, it is not the only one. Ectopic expression of 
SPL in all the whorls of an ag mutant, results in the formation of 
microsporangia only in the lateral parts of the staminoid ‘petals’, 
suggesting that microsporangial localization is established inde-
pendently of AG, and that there is at least one other SPL inducer 
that is expressed in the second whorl, and not in other whorls (Ito 
et al., 2004; Feng and Dickinson, 2007). Two other genes, JAG
and NUB play a crucial role in the formation of the four-locular 
anther architecture, independent of SPL induction. jag nub dou-
ble mutants do not have a proper microsporangium. Instead, they 
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form a fi nger-like structure that expresses SPL in its tips (Dinneny 
et al., 2006; Feng and Dickinson, 2007). 

The correct number of microsporangial initials and the subse-
quent production of the tapetal cell and middle cell layer identi-
ties are properties specifi ed by a putative LRR receptor kinase, 
EXCESS MICROSPOROCYTES1 (EMS1)/EXTRA SPOROG-
ENOUS CELLS (EXS) (Canales et al., 2002). Until recently, the 
ligand for EMS1 was unknown, though it was hypothesized that it 
could be involved in the same signaling pathway as the TAPETAL 
DETERMINANT1 (TPD1) gene. Both tpd1 and tpd1 ems1 mu-
tants are similar to the single ems1 mutant with arrested meiotic 
cytokinesis and degenerated microsporocytes (Yang et al., 2003). 
TPD1, is a small putatively secreted protein that interacts with 
EMS1 and induces its phosphorylation suggesting that TPD1 is 
the ligand of the EMS1 receptor that signals cell fate determina-
tion during sexual cell morphogenesis (Jia et al., 2008).

ROXY1 and ROXY2 redundantly regulate anther development in 
Arabidopsis (Xing and Zachgo, 2008). Lateral and medial stamens 
of roxy1 mutants might be fused and the former are sometimes 
missing (Xing et al., 2005). In these mutants, the adaxial anther 
lobes are affected in sporogenous cell formation during early dif-
ferentiation steps, abaxial lobes develop normally but pollen moth-
er cells degenerate, while the tapetum overgrows and occupies 
most of the locule space. Eventually, the tapetum degenerates too. 

ROXY1 and ROXY2 function downstream of SPL and upstream of 
DYSFUNCTIONAL TAPETUM1 (DYT1). As with other glutaredox-
ins, they may need an interaction with glutathione to catalyze bio-
synthetic reactions, suggesting that they may have a role in redox 
regulation and/or plant stress defense mechanisms involved in the 
control of male gametogenesis (Xing and Zachgo, 2008). 

After tapetal cells are specifi ed, a range of genes are essen-
tial for subsequent development. DYT1 encodes a putative bHLH 
transcription factor which functions downstream of SPL and EMS1.
However DYT1 is not able to complement the spl or ems1 mutant 
phenotypes when it is overexpressed, indicating that it is required 
but not suffi cient for normal tapetum development. dyt1 exhibits ab-
normal anther morphology with largely vacuolated tapetal cells that 
eventually collapse. Several tapetum-expressed genes, such as 
MALE STERILE 1 (MS1) and ABORTED MICROSPORES (AMS)
are upregulated by DYT1 (Zhang et al., 2006). In ms1 mutants for 
example, tapetal cell abnormalities can be seen and pollen devel-
opment is arrested just after microspores are released from the 
tetrads (Bowman, 1994; Wilson et al., 2001; Yang et al., 2007a). 
Other genes that participate in tapetum development include RE-
CEPTOR-LIKE PROTEIN KINASE2 (RPK2), FAT TAPETUM and 
GUS-NEGATIVE1 and 2 (GNE1, GNE2). RPK2 regulates tapetal 
function and middle layer differentiation (Mizuno et al., 2007). FAT 
TAPETUM, when mutated, has a middle layer that fails to collapse 
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Figure 18. Hormones in late stages of stamen development. 

At stage 10 of fl ower development, the auxin (IAA) concentration (yellow arrow) peaks (red gradient) in the stamens. During this period fi laments start to 
elongate and auxin prevents premature dehiscence. Auxin also participates in later anther dehiscence, probably by inducing JA production (green arrow) 
that peaks (dark green gradient) at stages 11 and 12 (Nagpal et al., 2005). JA coordinates fi lament elongation, pollen maturation, anther dehiscence and 
fl ower opening (Ishiguro et al., 2001). Although it has not been quantifi ed, GA (blue arrow) is involved in fi lament elongation and participates in microspo-
rogenesis. Pollen development in anthers of GA-biosynthetic mutants is arrested before microspore mitosis (for details see section 3.4.6; Cheng et al., 
2004; Iuchi et al., 2007).
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after meiosis and shows tapetal-like behavior (Sanders et al., 1999; 
Ma, 2005). In gne1 and gne2 mutants the sporogenous cells en-
ter meiosis, but cytokinesis is frequently arrested. The few highly 
aberrant tetrads formed degenerate early and microsporangia of 
mature anthers end up empty (Sorensen et al., 2002). 

Several mutants affecting pollen development have been 
described: pollenless3; three division mutant (tdm1); ms5, ms3
and ms15; determinate infertile1 (dif1); switch1 (swi1); defective-
pollen 1; and 6492 among others (Bhatt et al., 1999; Sanders et 
al., 1999; Sorensen 2002). Meiotic cells in pollenless3 anthers 
undergo a third division without DNA replication generating some 
cells with unbalanced chromosome numbers (Sanders et al., 
1999) or “tetrads” with more than four microspores. dif1 and swi1 
mutants have micro- and megaspores of uneven sizes because 
the encoded proteins are essential for sister chromatid cohesion 
in male and female meiosis and so mutants are totally infertile 
(Bhatt et al., 1999; Parisi et al., 1999; Mercier et al., 2001; Ma, 
2005). Finally, other pollen mutants exhibit abnormal callose de-
position (ms32, ms31, ms37, 7219, and 7593).

There are late-developmental anther mutants that affect an-
ther dehiscence. In non-dehiscence1 mutant plants, anthers con-
tain apparently wild-type pollen but do not dehisce. It has been 
hypothesized that a cell death suppression program, which is 
normally responsible for dehiscence, might be inactive in this 
mutant (Sanders et al., 1999). ms35 is also affected in anther 
dehiscence, because endothecial cells fail to develop the lignifi ed 
secondary walls that after desiccation shrink differentially leading 
to the retraction of the anther wall and full opening of the stomi-
um (Dawson et al., 1999; Scott et al., 2004). MS35, now MYB26 
(Steiner-Lange, 2003), is expressed during early anther develop-
ment and may be a regulator of NAC SECONDARY WALL-PRO-
MOTING FACTOR 1 and 2 (NST1, NST2), which have also been 
linked to secondary thickening in the anther endothecium (Yang 
et al., 2007b). In delayed-dehiscence mutants (dd1, dd2, dd3,
dd4, dd5) anther dehiscence and pollen release occurs after the 
stigma is no longer receptive preventing successful pollination, 
but stamens look wild-type and pollen is viable (Goldberg et al., 
1993). On the contrary, in defective-pollen1, 2, and 3, anthers are 
able to dehisce, but the pollen is aberrant and unviable. 

Recent publications have established that gibberellic acid 
(GA), jasmonic acid (JA), and auxins are involved during stamen 
development (Figure 18; Fleet and Sun, 2005; Nagpal et al., 2005; 
Wu et al., 2006; Cecchetti et al., 2008). The GA-defi cient mutant, 
ga1-3, produces an abortive anther where microsporogenesis is 
arrested prior to pollen mitosis (Cheng et al., 2004). Mutations 
in two GA receptors, GA-INSENSITIVE DWARF1a and b (AtGI-
D1a, b), affect the elongation of stamens, suggesting that these 
receptors have specifi c roles during stamen development (Iuchi 
et al., 2007). GA induces the degradation of the DELLA protein 
REPRESSOR OF GA1-3 (RGA) upon ubiquitination. Microarray 
analysis shows that 38% of the RGA downregulated genes are 
expressed in the male gametophyte at various stages of micro-
sporogenesis (Hou et al., 2008).

Temporal coordination of the elongation of fi laments, pollen 
maturation, and dehiscence of anthers is important for effi cient 
fertilization. The expression overlap of RGA-regulated genes and 
jasmonate-responsive genes during stamen development sug-
gest a crosstalk between GA and JA signaling pathways in these 
processes (Hou et al., 2008).

JA has been shown to be involved in at least three androecial 
developmental pathways: fi lament elongation, anther dehiscence 
and pollen production (Mandaokar et al., 2006). Different male 
sterile mutants have been found to be JA biosynthetic mutants 
(McConn and Browse, 1996; Sanders et al., 2000) including: the 
triple fad mutant (fad3–2 fad7–2 fad8), which lacks the fatty acid 
precursors of JA; defective in anther dehiscence 1 (dad1), which 
encodes a phospholipase A1 that catalyzes the initial step of 
JA biosynthesis; and dd1, a member of the 12-OXOPHYTODI-
ENOATE REDUCTASE (OPR3) gene family (Stintzi and Browse, 
2000; Ishiguro et al., 2001). OPR3/DD1 is expressed in the sto-
mium and in the septum cells of the anther that are involved in 
pollen release. All these mutant phenotypes can be rescued by 
exogenous application of JA, suggesting that this hormone plays 
an important role in controlling the timing of anther dehiscence. 
Interestingly, DAD1 is a direct target of AG (Ito et al., 2007). 

Similarly, the coronatine insensitive 1 (coi1; JA receptor) 
mutant is defective in both pollen development and anther de-
hiscence. Stamens of coi1 fl owers have shorter fi laments than 
those of wild-type fl owers and anthers are indehiscent contain-
ing pollen grains with conspicuous vacuoles (Feys et al., 1994; 
Xie et al., 1998). 

Three related polygalacturonases, enzymes involved in pectin 
degradation that promotes cell separation, are also involved in 
JA-regulated anther dehiscence. ARABIDOPSIS DEHISCENCE 
ZONE POLYGALACTURONASE 1 (ADPG1) and 2 (ADPG2),
and QUARTET2 (QRT 2) gene expression are distinctly regulated 
by JA (Ogawa et al., 2009). 

To determine the jasmonate-regulated stamen-specifi c tran-
scriptome the expression profi les of JA-treated and untreated opr3
mutants were compared (Mandaokar et al., 2006). It was found 
that 821 genes were induced (70% of them expressed in the spo-
rophytic tissue) and 480 genes were repressed by JA and 13 tran-
scription factors were identifi ed that could be important for stamen 
maturation pathway(s). Of these, MYB21, MYB24, and MYB28 are 
JA-responsive genes (Mandaokar et al., 2006). myb21 mutants 
have short fi laments, are late to dehisce and have reduced fertility. 
Though myb24 mutants look like wild type, myb21 myb24 double 
mutants have a more severe phenotype than myb21, suggesting 
that these two genes might be redundantly involved in important 
aspects of JA-dependent stamen development. MYB28 is involved 
in amino acid metabolism and it is downregulated by both JA and 
RGA. This study also uncovered several other biochemical path-
ways that could be important during stamen and pollen matura-
tion. Other results indicate that JA coordinates pollen maturation, 
anther dehiscence, and fl ower opening (Ishiguro et al., 2001). Aux-
ins have also been proved to participate in these processes arf6
arf8 double mutants are defective in anther dehiscence probably 
because they produce too little JA. Accordingly, this phenotype 
can be rescued by application of JA (Nagpal et al., 2005). How-
ever, auxins trigger fi lament elongation and prevent premature an-
ther dehiscence and pollen maturation at earlier stages of stamen 
development. While JA production peaks at stages 11-12 of fl ower 
development (see Figure 6 and 18; Nagpal et al., 2005) auxin 
receptors (TIR1 and AFBs) are already expressed at the end of 
meiosis. Mutants in these genes cause the release of mature pol-
len grains before fi laments elongate. At later stages, the amount 
of JA decreases allowing these processes to continue (Figure 18; 
Cecchetti et al., 2008).
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Additional stamen or pollen microarray analyses have been 
performed recently. For example, a clear difference was found be-
tween the genes that are expressed in the sporophyte and in pol-
len with 39% of the expressed genes being pollen specifi c (Honys 
and Twell, 2003; Pina et al., 2005). The global gene expression 
profi les of wild-type reproductive axes have been compared to 
those of the fl oral mutants ap3, spl/nzz, and ms1 in order to study 
gene expression during stamen development and microspore 
formation (Alves-Ferreira et al., 2007). The data suggest that dif-
ferent interconnected regulatory modules may control specifi c 
stages of anther and microspore development (for further details 
see: Amagai et al., 2003; Cnudde et al., 2003; Honys and Twell, 
2003; Zik and Irish, 2003a; Wellmer et al., 2004; Pina et al., 2005; 
Alves-Ferreira et al., 2007; Verelst et al., 2007).

3.4.6 Carpels and ovules

Carpels are specifi ed by the C gene AG, and the SHP1, SHP2,
and STK genes (in an AG independent manner) together with 
the SEP genes (Bowman et al., 1989; Coen and Meyerowitz, 
1991; Favaro et al., 2003; Pelaz et al., 2000; Pinyopich et al., 
2003). They arise in the center of the fl ower meristem and when 
carpels are fully developed the fl oral meristematic cells are 
completely consumed. Carpels are the most complex structures 
within fl owers and a GRN underlies their development (Figure 
19; Table S1). Comprehensive reviews on carpel and fruit de-
velopment can be found in Bowman et al., (1999), Ferrándiz et 
al., (1999), Balanzá et al., (2006) and in Roeder and Yanofsky 
(2006) in this book.
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Figure 19. Main stages of carpel development and some genes involved.

Three different stages of carpel development are represented by the schemes in the upper part of the fi gure. Briefl y, at stage 6, the central zone of the FM 
begins to grow upward and eventually will form the gynoecium. From stages 11 to 13, the ovule primordia (O) arise from the placenta fl anking the medial 
ridges, and the Archesporial cell (Ar) develops from a single hypodermal cell at the ovule. The Ar then forms the megaspore mother cell (MMC) through 
megasporogenesis, and the MMC forms the embryo sac through megagametogenesis. The embryo sac consists of 2 synergids, 1 egg cell, 1 central cell 
and 3 antipodal cells. The medial ridges meet in the center of the fruit to form the septum (sm) which divides the gynoecium in two internal compartments. 
The mature gynoecium is externally formed by the fusion of two valves (va); internally, it also carries totally differentiated ovules each one containing its 
own embryo sac. 
Carpel-specifi c gene networks are shown in blue. For genes and references not in the main text, see Table S1. Part of the network shown here was taken 
from Roeder and Yanofsky (2006) and Balanzá et al. (2006). Color codes of interactions and gene/fl oral organs are according to those of functional mod-
ules identifi ed in Figure 15. Arrows and bars indicate positive and negative regulatory interactions, respectively.
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3.4.7 Nectaries

Little is known about the molecular genetics of nectary develop-
ment. It is clear that nectaries are ABC-independent because ap2-2 
pi-1 ag-1 triple mutant fl owers develop nectaries, although in these 
mutants nectaries are clearly smaller. However, ABC genes may 
play a role in nectary patterning as pi-1 ag-1 and ap3-3 ag-3 double 
mutants lack them (Baum et al., 2001). Also, single mutant lfy and 
ufo plants show reduced nectary formation (Lee et al., 2005a).

Several genes have been found to be expressed in the nec-
taries (e.g., SHP1, ALC, SPL, MS35 and XAL1), but no detect-
able defect is observed in their respective mutants (Figure 5G; 
Schiefthaler et al., 1999; Roeder and Yanofsky, 2006; Yang et al., 
2007b; Tapia-López et al., 2008). The only gene that has been 
clearly related to nectary development is CRC, which is also im-
portant for gynoecial development (Alvarez and Smyth, 1999; 
Bowman and Smyth, 1999). The regulation of CRC in the nectar-
ies seems to be independent of its expression in the gynoecium. 
Expression of this gene is already detectable at stage 6 of fl ow-
er development in the area where the nectaries will be formed. 
Thus, CRC may be important for the early specifi cation of nectary 
cells (Bowman and Smyth, 1999). CRC may also be necessary 
for maturation or maintenance of the nectaries, because it is ex-
pressed at high levels when they develop (Bowman and Smyth, 
1999) and crc mutants have defects in nectary development. But 
CRC is not suffi cient for nectary development, because its ectopic 
expression does not yield ectopic nectaries (Lee et al., 2005b). 
Bioinformatic and functional molecular genetic approaches have 
been taken to discover components of the regulatory network in 
which CRC participates during nectary and carpel development. 
A combination of fl oral homeotic gene activities acting redundant-
ly with each other, involving AP3, PI and, AG and in combina-
tion with SEP proteins, activate CRC in both organs (Lee et al., 
2005a). Interestingly in another study, CRC was also found to be 
a direct target gene of AG (Gómez-Mena et al., 2005) and to be 
indirectly regulated by LFY and UFO (Lee et al., 2005a). A model 
has been proposed in which LFY and UFO activate downstream 
MADS-box genes which could be working in conjunction with 
region-specifi c factors to activate CRC during nectary and carpel 
development (Lee et al., 2005a). 

Evolutionary studies have indicated that the CRC gene may 
have been recruited as a regulator of nectary development in the 
core eudicot plant lineage, but its ancestral function could have 
been related to carpel development (Lee et al., 2005b).

4. THEORETICAL MODELS: INTEGRATIVE AND DYNAMIC 
TOOLS FOR UNDERSTANDING FLOWER DEVELOPMENT

As shown throughout this chapter, morphogenetic patterns under-
lying fl ower development arise from complex, often non-additive, 
interactions among several molecular and other kinds of compo-
nents (e.g., cells) and factors (e.g., morphogen gradients, physi-
cal and geometrical constraints) at different levels of organization. 
Dynamical models can be used to study the concerted action of 
many elements at different spatio-temporal scales and levels of 
organization; an approach which is becoming both necessary 
and possible for understanding how morphogenetic patterns 
emerge and are maintained during development in general, and 

in particular, in fl ower development (for reviews Alvarez-Buylla et 
al., 2007; Grieneisen and Scheres, 2009). At the level of GRN, 
mathematical and computational models provide useful tools for 
integrating and interpreting molecular genetic information, or for 
detecting gaps and contradictions in the evidence for particular 
functional regulatory modules. At other levels, two or three-di-
mensional morphogenetic models of coupled GRNs within cells 
or among cells are useful for understanding spatiotemporal cell 
patterning in individual organs and overall plant architecture; and 
this enables novel insights into the mechanisms underlying de-
velopmental processes to be made. Such morphogenetic models 
are also a way of posing informed non-trivial predictions, testing 
hypotheses, uncovering potentially generic mechanisms under-
lying conserved features, and performing in silico investigations 
that guide novel experiments in biological development.

As the amount of experimental evidence increases and novel 
theoretical approaches and techniques develop, there continue 
to arise experimentally-grounded models of development and 
theoretical tools useful in posing predictions amenable to further 
experimental testing. These advances contribute to discussions 
of central issues in developmental and evolutionary biology (e.g., 
Kauffman, 1969; Berg et al., 2004; Milo et al., 2004; Wagner, 2005; 
Alvarez-Buylla et al., 2007; Balleza et al., 2008). In Arabidopsis, 
early fl ower development has been studied using dynamic gene 
regulatory network (GRN) models. Such models have helped 
capture the logic of gene regulation, mostly at the transcriptional 
level, during cell-type specifi cation in various systems (e.g. von 
Dassow et al., 2000; Espinosa-Soto et al., 2004; Huang and Ing-
ber, 2006; Li et al., 2006; Benítez et al., 2008). In this section we 
focus on this modeling approach and present some of the main 
results derived from network modeling in fl ower development.

4.1 Gene Regulatory Network Models

In this section we review some central notions in GRN theory 
and the main assumptions that are made and present some of 
the main results derived from network modeling in fl ower devel-
opment. GRN models are composed of nodes, which stand for 
genes or proteins, and edges or connections, which represent 
the interactions among nodes (arrows for upregulation and bars 
for downregulation; for an example see Figure 20). Genes in the 
GRN model may take different activation states, depending on 
the activation states of their inputs. Given the architecture of the 
network and the sign of the interactions, it is possible to defi ne 
a set of rules or kinetic functions that govern the GRN dynam-
ics, that is, the way activation states of the genes change over 
time. These rules or kinetic functions may be defi ned and stud-
ied in the context of different mathematical frameworks, some of 
which have been thoroughly reviewed elsewhere (Gibson and 
Mjolsness, 2004; Alvarez-Buylla et al., 2007). In experimentally-
based GRNs, the dynamic rules may be obtained from reported 
molecular genetics data as well as from functional genomics 
datasets.

The kinetic functions of gene activation depend on the states 
of the input nodes and are multivariate. These may be modeled 
with discrete or continuous functions. In the former, Boolean 
functions that allow only “0” (OFF; not expressed) or “1” (ON; 
expressed) values for the nodes have been successfully used 
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then the elements of the GRN change their activation state ac-
cording to the dynamic rules until they reach an attractor. Kauff-
man (1969) proposed that Boolean GRN attractors correspond 
to the activation profi les typical of different cell types and there-
fore that exploring the GRN architecture and dynamics is funda-
mental to understanding cell-type determination processes. This 
idea has now been verifi ed experimentally and explored further 
(e.g. Albert and Othmer, 2003; Huang and Ingber, 2006; Alvarez-
Buylla et al., 2007). 

Another helpful notion in GRN dynamical studies is that of 
basins of attraction. Given the dynamic rules of the network, 
the set of initial conditions that lead to each of the attractors is 
known as its basin of attraction. As we discuss below, the con-
cepts related to a GRN - attractor, initial condition and basin of 
attraction - may be useful in addressing some pertinent aspects 
of fl ower development.

4.1.2 Functional Modules in Flower Development

The functional data on genes involved in fl ower development 
reviewed in this Chapter suggest that several regulatory mod-
ules act at different stages and in different structures (Figures 
9, 15-17 and 19). We defi ne a regulatory module as a set of in-
teracting genes that have more interactions among themselves 
than with other genes. These modules are semi-autonomous, 
meaning that their dynamic outcomes are fairly independent of 
other modules. In Figure 15 we have presented the best-studied 
modules associated with fl ower development. The approach de-
scribed here for the functional module that includes the ABC 
genes could in principle be used for all of these modules as 
suffi cient nodes have been identifi ed and their regulatory inter-
actions characterized. Eventually, models of coupled GRN that 
consider several such models together, both within and among 
cells, will be possible. For now, we have focused in just one such 
regulatory module.

In previous studies, we have proposed and analyzed the regu-
latory module, which includes the ABC genes as well as other 
components, that is suffi cient to regulate the partitioning of the 
infl orescence and fl oral meristems into subregions of primordial 
cells. In the case of the fl ower meristem, each one of the four 
subregions is composed of the primordial cells that eventually 
give rise to each of the four types of fl oral organs: sepals, petals, 
stamens and carpels. 

We use this functional module as a working example of the 
protocol that has been used in order to assemble an experi-
mentally grounded gene regulatory network (GRN) model cor-
responding to a functional module. Then we demonstrate how 
once such a GRN model is postulated, it is possible to follow its 
dynamics, and explore how the concerted action of multiple inter-
connected molecular components eventually lead to stable gene 
expression profi les that may be compared to those characterizing 
different cell types. Then we delineate some theoretical approach-
es put forward to model coupled GRN dynamics that may underlie 
pattern formation and morphogenesis during the early stages of 
fl ower development, when the fl oral meristem is partitioned into 
four concentric rings of primordial cells. Finally, we review other 
modeling approaches that are useful to study signal transduction 
pathways.

to recover the key qualitative aspects of GRNs (e.g., Albert and 
Othmer, 2003; Espinosa-Soto et al., 2004). In Boolean networks, 
parameters of specifi c kinetic functions are not required. It is ap-
propriate to assume that the GRN nodes are Boolean variables 
given that: (1) transcriptional regulation may be discrete and take 
place in the form of pulses, rather being continuous (Ross et al. 
1994, Fiering et al., 2000, Ozbudak et al., 2002); (2) the experi-
mental data at hand can be readily formalized as logical rules 
(see detailed discussions in Albert and Othmer, 2003; Espinosa-
Soto et al., 2004; Chaos et al., 2006), while there are no or very 
few available data on parameters required to postulate continu-
ous functions; and (3) in complex GRNs with many components 
interacting in non-linear manners, the overall topology of the GRN 
and the form of the logical rules of gene interaction, rather than 
the details of the kinetic functions, are what determine the qualita-
tive network dynamics.

Independently of the mathematical formalism used, dynamical 
analyses of GRNs mostly focus on fi nding the steady gene activa-
tion profi les, that is, the confi gurations of the network that, once 
reached, remain in that confi guration. These confi gurations are 
called attractors. The GRN model may be initialized on a particu-
lar gene-activation confi guration known as an initial condition and 

Figure 20. Floral organ specifi cation gene regulatory network (FOS-GRN) 
model. 

The diagram shows GRN topology where circles or nodes correspond to 
genes or proteins, and arrows and bars correspond to positive and nega-
tive regulatory interactions, respectively. The SEP node represents the 
SEP1, 2, and 3 genes together. The interactions are updated with respect 
to previous publications (Espinosa-Soto et al., 2004; Chaos et al., 2006). 
The GRN attractors or steady states match the gene expression profi les 
that characterize infl orescence meristem regions and fl ower organ primor-
dia. See text and Table 1 for details and experimental data supporting this 
model (and Table S2 for the dynamics truth tables). Dotted lines represent 
interactions predicted by the model.



Flower Development 33 of 57

4.2 Arabidopsis Flower Organ Specifi cation GRN (FOS-GRN) 

Soon after fl owering is induced, the fl ower meristem is partioned 
into four concentric regions of primordial cells from which fl oral 
organs will later form. During the last decade, an experimentally-
grounded GRN model for fl ower organ specifi cation (FOS-GRN) 
has been built and investigated (Figure 20; Mendoza and Alva-
rez-Buylla 1998; Espinosa-Soto et al., 2004; Chaos et al., 2006; 
Alvarez-Buylla et al., 2008). This model incorporates the intri-
cate regulatory interactions among ABC genes themselves and 
among ABC and non-ABC genes that are key to this process. 
This functional module includes: some key regulators underlying 
the transition from IM to FM (FT, TFL, EMF, LFY, AP1, FUL); the 
ABCs and some of their interacting genes (AP1, AP3, PI, AP2,

AG, SEP); some genes that link fl oral organ specifi cation to other 
modules regulating primordia formation and homeostasis (AG,
CLF and WUS); and some regulators of organ boundaries (UFO
and LUG; Figures 9, 15 and 20). 

The main result obtained from analyzing this GRN is that the 
postulated network converges to only ten attractors—even though 
it can be initialized in more than 130,000 different confi gurations of 
gene activation. Furthermore, the attractors—the stable confi gura-
tions recovered—match gene activation profi les typical of the four 
infl orescence meristem regions (i.e., a region lacking WUS and 
UFO, two regions with either one of these two genes turned on, 
and a fourth region with both genes turned on; see Espinosa-Soto 
et al., 2004), as well as those of primordial sepal, petal, stamen 
and carpel cells (Figure 21). This shows that the FOS-GRN is suf-

Figure 21. Arabidopsis infl orescence and fl ower development and FOS-GRN. 

(A) SEM colored where four regions I1, I2, I3 and I4 are distinguished within the IM. FMs are also seen arising from the fl anks of the IM,1 the oldest and 
5 the youngest. 
(B) I1, I2, I3 and I4 regions of the IM correspond to four of the FOS-GRN attractors. Expressed genes for each attractor are represented as green circles, 
while non-expressed genes correspond to red circles (nodes are in the same relative position as in Figure 20. * marks the position of the EMF1 node for 
further reference). Note that this model recovers the respective regions in the IM with both WUS and UFO, with either one of these two genes, or with 
neither expressed. 
(C) SEM colored to distinguish four types of primordial cells in young fl ower meristems. Each will eventually develop into the different fl ower organs, from 
the fl ower periphery to the center, sepals (se), petals (pe), stamens (st) and carpels (ca). 
(D) The six attractors of the FOS-GRN model match gene expression profi les characteristic of sepal, petal (p1 and p2), stamen (st1 and st2) and carpel 
primordial cells. The gene activation profi les of the attractors are congruent with the combinatorial activities of A, B, and C genes described in the ABC 
model of fl oral organ determination (adapted from Alvarez-Buylla et al., 2008).
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Figure 22. Basins of attraction for the four fl ower organ FOS-GRN attractors.

Attractors of FOS-GRN match the gene expression profi les of the four types of fl oral organ primordia of young fl oral buds (sepal, petal, stamen and carpel). 
The fan diagrams depict the GRN confi gurations (combinations of 0s and 1s corresponding to gene activation profi les) that lead to each of the attractors. 
Points in the outermost layers of these fan diagrams correspond to initial confi gurations of the network and they are linked to the transitory confi gurations. 
Petal2 and Stamen2 stand for one of the two possible attractors for each one of these organs. Relative position of nodes and their colors as in Figure 21. 
* marks the position of the EMF1 node for further reference.

fi cient to recover the gene activation profi les required to specify 
primordial cells during the fi rst stages of fl ower organ develop-
ment. Therefore the GRN itself constitutes a functional module 
that robustly leads to the gene confi gurations that characterize dif-
ferent regions of infl orescence and fl ower meristems during early 
fl ower development; and this independently of the activation states 
of additional genes that are connected to this elucidated regulato-
ry module. Furthermore, various robustness analyses have been 
performed showing that the recovered attractors are also robust in 
response to permanent alterations in the logical functions of gene 
interactions and the inclusion of gene duplications. Therefore, 
these results (Espinosa-Soto, et al., 2004; Chaos et al., 2006) sug-
gest that FOS dynamically and robustly emerges from complex 
networks of molecular components, rather than from a series of 
linear or hierarchical gene interactions or from the action of partic-
ular genes. The FOS-GRN model not only recovers the ABC gene 
combinations that are necessary for FOS, but it also provides a 
dynamic explanation for the formation of such gene combinations, 

and postulates a set of gene interactions with the ABC genes, that 
are also suffi cient for FOS. The functions and interactions of the 
genes included are reviewed earlier in this chapter.

The FOS-GRN was validated by using this model to simulate 
the effect of loss-of-function mutations or overexpression, and 
comparing the results recovered from the model with the gene 
activation profi les determined experimentally in mutant or over-
expressor lines. The mutants were simulated by fi xing the state 
of the gene to 0 for loss of function, and to 1 for gain of function 
or overexpression (Figure 20; Table 1 and Table S2). In all cases 
tested, the simulated and empirically-reported profi les matched 
(Espinosa-Soto et al., 2004). 

In addition, this GRN model has enabled investigations to be 
made into the suffi ciency and necessity of particular gene regula-
tory interactions, which have led to novel predictions. For example, 
these analyses predicted that AG upregulated itself (Espinosa-
Soto el al., 2004), which seemed somewhat counterintuitive at 
the time, but which was then verifi ed by independent experiments 
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(Gómez-Mena et al., 2005). Also, computer simulations of the 
FOS-GRN that show that its attractors are robust to different types 
of perturbation and to duplications (Espinosa-Soto et al., 2004; 
Chaos et al., 2006) can account for the overall conservation of 
the fl ower structure throughout angiosperm (particularly eudicot) 
evolution (Rudall, 2007; Whipple et al., 2004; Adam et al., 2007). 

Since the FOS-GRN model was based on thorough molecular 
data and is one of the few well-characterized regulatory modules, 
it has been used as a “model GRN” for further methodological, 
theoretical and conceptual developments in GRN and systems bi-
ology research (Table 2). The main conclusions obtained from the 
fi rst versions of this GRN have been confi rmed. New data regard-
ing FOS are continuously being generated (novel data are also 
summarized in Table 1) and the FOS-GRN constitutes a basic the-
oretical framework in which to integrate it alongside previous data. 
Here, we have updated the FOS-GRN taking these novel data into 
account and conclude that the basic module originally put forward 
(Espinosa-Soto et al., 2004; Chaos et al., 2006) is robust to the 
addition of these newly discovered interactions. We consider, for 
instance, that EMF1 downregulates AG (Calonje et al., 2008), and 
AP3/PI downregulate AP1 (Sundström et al., 2006), so the postu-
lated module seems to be robust to the addition of intermediary 
components or previously missing interactions.

Simulations of the updated FOS-GRN have been performed 
with the new software, ATALIA (http://www.ecologia.unam.
mx/~achaos/Atalia/atalia.htm) developed in the Alvarez-Buylla 
laboratory by A. Chaos-Cador. This tool can be used to readily 
update this and other GRN models and explore their dynamics. 
We illustrate the use of this software with a visualization of the at-
tractors’ basins (Figure 22) and a simulation of the updated wild-
type and certain mutant FOS-GRN dynamics (Figure 23). 

In the simulated FOS-GRN, genes can take only two activation 
states: 0 for no expression and 1 for expression. Hence, by using 
combinations of 0s and 1s, we can describe all the possible initial 
conditions of the GRN. Figure 22 presents the so-called fan dia-
grams that show all the GRN confi gurations leading to each of the 
attractors. Knowing the relative sizes of the basins of attraction of 
each steady state is the key to exploring the robustness of each 
attractor in the face of perturbations. 

ATALIA can also calculate the attractor that every possible ini-
tial condition will eventually reach and show this information in a 
tapestry of destinies. In such tapestries, each possible confi gu-
ration of the GRN is represented by a square in a lattice and is 
colored according to the attractor it reaches. Moreover, ATALIA 
can draw a tapestry that represents the difference between the 
original wild-type tapestry and a mutant one (Figure 23). For ex-
ample, if we want to know whether an ap2 mutation has a more or 
less drastic effect in terms of the GRN dynamics than a pi muta-
tion, we can analyze the tapestries of ap2 and pi shown in Figure 
23 and conclude that ap2 mutation has stronger dynamic effects 
than pi given the GRN postulated up to now. Given the complexity 
of the network involved, such predictions are impossible to make 
without a tool like ATALIA. As the regulatory interactions in other 
modules that participate in fl ower development are gradually un-
covered, for each one the experimental data can be exhaustively 
mined and formalized in the form of a GRN topology and logi-
cal rules governing its components’ interactions. ATALIA can then 
be used to explore their dynamics, validate the proposed GRN 
models by simulating experimental reports of mutants or overex-

pressing lines, and to postulate novel interactions. Eventually, two 
or more functional modules may be interconnected via common 
components to postulate GRN aggregates. Such an approach will 
be useful in beginning to uncover the types of microtopological 
trait that characterize the nodes connecting different functional 
modules, for example. 

We have illustrated the potential of using dynamic GRN mod-
els to understand cell differentiation using a relatively small and 
well-characterized module. Approaches used for small regulatory 
modules that are well-characterized in terms of molecular genet-
ics, should feedback from functional genomic efforts that span the 
dynamics of a larger number of genes or proteins under diverse 
conditions and developmental stages or tissues. 

4.2. Temporal and Spatial Patterns of Cell-fate Attainment 
During Early Flower Development

In real biological systems, populations of meristematic cells differ-
entiate into different cell types in stereotyped temporal sequences 
and spatial patterns. The fi rst primordial cells to be determined 
in the fl ower meristem are those of sepals, then those of petals, 
stamens and carpels going from the periphery to the center of 
the fl oral meristem. This suggests that in the population of meri-
stematic cells the most probable temporal order in which each 
attractor is visited follows the same sequence (Alvarez-Buylla et 
al., 2008). Recent results from another theoretical approach show 
that the sequence of fl oral organ determination can be recovered 
by introducing some level of stochasticity (random noise) in the 
GRN dynamics, namely, a degree of error in the updating dynami-
cal rules of the GRN (Alvarez-Buylla et al., 2008). These results 
are consistent with a handful of other recent studies showing that 
stochasticity at the molecular scale may contribute to the forma-
tion of spatiotemporal patterns in development (see review in Raj 
and van Oudenaarden, 2008). Studies with the stochastic version 
of the FOS-GRN also concluded that the relative position of the 
basins is important in determining the most probable temporal 
sequence of cell-fate attainment referred to above (Alvarez-Buylla 
et al., 2008). This fascinating result certainly suggests that the 
stereotypical temporal pattern of cell fate specifi cation at early 
stages of fl ower development may be an emergent and robust 
consequence of the complex GRN underlying cell-fate determi-
nation and that, in principle, it could take place in the absence 
of inducing signals, emerging only as a result of the stochastic 
fl uctuations that occur during transcriptional regulation (Alvarez-
Buylla et al., 2008). Ongoing modeling efforts are explicitly focus-
ing on spatial domains, and exploring the need and suffi ciency of 
different cell-cell communication mechanisms or physical fi elds 
(e.g., created by curvature or tension forces) that could provide 
positional information for spatio-temporal cell patterning during 
early stages of fl ower development. 

It is important to mention that the FOS-GRN modeled up to 
now is an abstraction of the qualitative regulatory logic underlying 
the IM and FM subregionalization during early stages of fl ower 
development when the ABC patterns are established. However, 
other regulatory modules for meristem positioning, growth and 
polarity, among others, still need to be considered in order to fully 
understand spatiotemporal cell patterning and morphogenesis of 
IM and FM. Some genes interacting with FOS-GRN components 
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Figure 23. Simulation results for wild type (WT) and two mutants. 

(A) Simplifi ed representation of the FOS-GRN. The mutated genes are in red (nodes are in the same relative position as in Figure 20). Mutations were 
simulated by constitutively turning “off” (loss-of-function) mutated genes regardless of the dynamical rules. 
(B) Floral diagrams showing fl oral organs of the simulated WT and mutant plants. These correspond to the steady-state gene expression arrays (attractors) 
attained in the simulation. 
(C) Tapestries of gene confi guration destinies corresponding to the simulated WT and mutant lines. In the WT simulation each square in the tapestry 
represents an initial condition and they are colored according to the attractor they eventually reach. In the mutant simulation for ap2 and pi, the tapestries 
illustrate the difference between the WT tapestry of destinies and that obtained for the mutant simulations. Yellow squares, confi guration attained is the 
same attractor as in the WT; red squares, confi gurations that reached a new attractor; purple squares, confi gurations that attained a pre-existing attractor 
but not the same one reached in the WT simulations. Images generated with ATALIA (http://www.ecologia.unam.mx/~achaos/Atalia/atalia.htm). 

(e.g. AGL24, BEL, RBE and those described in the last section of 
Table 1) that do not seem to directly affect cell-type determination 
in the fl oral meristem, could link the FOS-GRN with: a) signaling 
pathways (e.g. Díaz and Alvarez-Buylla, 2006); b) genes involved 
in cell growth and proliferation both before and after the partition-
ing of the fl oral meristem into the four concentric regions; and c) 
other types of downstream genes or modules that are important 
during cell sub-differentiation and organogenesis at later stages 
of fl ower development. 

A complete understanding of fl ower morphogenesis will con-
tinue to require multidisciplinary approaches and modeling tools 

that help unravel how such single-cell GRNs are coupled in ex-
plicit cellularized spatial domains and physicochemical fi elds 
(e.g. Jönsson et al., 2005, Savage et al., 2008; Benítez et al.,
2008), including metabolism, signaling, and emergent gradients 
of morphogens (e.g., auxin), cell growth and proliferation, me-
chanical forces and cell-cell communication mechanisms. All of 
these are likely to feedback in non-linear ways from and to the 
GRNs underlying cell differentiation or proliferation (for example 
see Hamant et al., 2008).

It is important to keep in mind, for example, that plant cell 
growth in meristems is symplastic. This implies that the contacts 
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Table 1. Summary of evidence for the FOS-GRN gene interactions shown in Figures 20-23 (ChIP, chromosome immunoprecipitation; EMSA, electropho-

retic mobility shift assays; arrows indicate gene induction and bars repression; Espinosa-Soto et al., 2004; Chaos et al., 2006). 

INTERACTIONS EXPERIMENTAL EVIDENCE REFERENCE

AG (AT4G18960) AG ChIP shows that AG interacts in vivo with predicted regulatory sequences of AG . Gómez-Mena et al., 2005.

AP1 (AT1G69120) --| AG Sepals are replaced by carpels, and petals by stamens in ap1 mutants. AG mRNA 
found in all fl ower primordia of ap1-1 plants. First whorl organs are sometimes carpel-
loid, and second whorl organs are staminoid in ap1 mutants.

Bowman et al., 1993; Weigel 
and Meyerowitz, 1993; Liu and 
Meyerowitz, 1995.

CLF (AT2G23380) --| AG In clf mutants, fi rst whorl sepals are frequently carpelloid, second whorl organs are 
staminoid petals and AG mRNA is detected in sepals. It is likely that CLF is part of a 
complex with EMF2, MSI1, and FIE that epigenetically regulate AG.

Goodrich et al., 1997; Calonje et 
al., 2008.

LFY (AT5G61850) AG Expression of AG is reduced in lfy-6 fl owers.
The expression of LFY fused to a strong activation domain produces increased and 
ectopic AG expression.
LFY binds to the fi rst intron of AG, and cooperates with the WUS homeodomain to 
activate it.

Weigel and Meyerowitz, 1993; 
Parcy et al., 1998; Busch et al., 
1999; Lohmann et al., 2001.

LUG (AT4G32551)--| AG AG is ectopically expressed in lug-1 mutants.
LUG functions as a repressor of AG via its the second regulatory intron.

Liu and Meyerowitz, 1995; 
Sieburth and Meyerowitz, 1997; 
Deyholos and Sieburth, 2000; 
Gregis et al., 2006.

SEP3 (AT1G24260) AG There is AG expression in rosette leaves of 35S:SEP3 plants. In addition, 35S:AG 
35S:SEP3 plants have more pronounced carpelloid features.

Castillejo et al., 2005.

TFL1 (AT5G03840) --| AG Stigmas and styles of terminal fl owers in lfy ap1 double mutants are normal if the tfl 1
mutation is added.

Shannon and Meeks-Wagner, 
1993.

WUS (AT2G17950) AG wus mutants lack carpels and most stamens. In AP3:WUS transgenic plants, second 
whorl organs are carpelloid stamens instead of petals, whereas in AP3:WUS ag 
plants, second and third whorl organs do not differentiate into carpelloid stamens.

Laux et al., 1996; Lenhard et al., 
2001; Lohmann et al., 2001.

AG --| AP1 AP1 mRNA accumulates uniformly in ag-1 mutant fl owers. Gustafson-Brown et al., 1994.

FT (AT1G65480) AP1 In ft lfy double mutants, there is no AP1 mRNA unlike in the respective single mutants, 
suggesting that at least one of these two genes needs to be active for AP1 activation

Ruiz-García et al., 1997.

LFY AP1 AP1 expression is delayed in lfy-6 null mutants, ectopic in 35S:LFY plants and in-
creased when LFY-VP16 is induced.
LFY directly binds the AP1 promoter and activates this gene.

Parcy et al., 1998; Liljegren et 
al., 1999. Weigel and Nilsson, 
1995; Wagner et al., 1999.

TFL1 --| AP1 In tfl 1 mutants, AP1 is ectopically expressed in the basal lateral meristems and in 
terminal fl owers. AP1 expression is also retarded in 35S:TFL1

Gustafson-Brown et al., 1994; 
Ratcliffe et al., 1998.

TFL1 --| AP2 (AT4G36920) The absence of petals in tfl 1 ap2 fl owers and the presence of petals in tfl 1 single mu-
tants suggest there is ectopic AP2 activity in the terminal fl owers of tfl 1 single mutants.

Shannon and Meeks-Wagner, 
1993.

AG AP3 (AT3G54340) There is weaker GUS expression in the third whorl of ag-1 AP3:GUS fl owers than in 
the transgenic control.
AG may maintain AP3 expression because cauline leaves of 35S:PI 35S:AP3 
35S:SEP3 35S:AG are converted into stamen-like organs.
ChIP shows that AG interacts in vivo with predicted regulatory sequences of AP3.
Also, AP3 RNA is absent from the center of the ag-1 meristem.

Hill et al., 1998; Honma and 
Goto, 2001; Gómez-Mena et al., 
2005; Zhao et al., 2007.

AP1 AP3 AP3 expression is quite normal in ap1 mutants but is almost undetectable in lfy ap1
double mutants, indicating that AP1 can act with LFY to regulate AP3 expression.
Futhermore, AP1 seems to bind AP3 cis-regulatory elements.

Weigel and Meyerowitz, 1993; 
Hill et al., 1998; Ng and Yanof-
sky, 2001; Lamb et al., 2002.

AP3 AP3 Endogenous AP3 is upregulated in 35S:AP3-GR plants induced with dexamethasone, 
supporting the notion that AP3 self-activates.

Hill et al., 1998; Honma and 
Goto, 2000.

(Continued)
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Table 1. (continued)

INTERACTIONS EXPERIMENTAL EVIDENCE REFERENCE

LFY+UFO (AT1G30950) 
AP3

Both the amount and the domain of AP3 expression are reduced in lfy-6 mutants.
ufo-2 plants have less AP3 protein and less AP3 mRNA.
Both LFY and UFO have to be overexpressed to induce ectopic expression of AP3.
EMSA show that LFY binds directly to sequences in the AP3 promoter.
ChIP shows that UFO associates with the AP3 promoter. This association was 
abolished when ChIP was performed using extracts from lfy-26 plants harboring the 
35S:UFO-Myc transgene.

Weigel and Meyerowitz, 1993; 
Meyerowitz, 1995; Parcy et al., 
1998; Lamb et al., 2002; Levin 
and Chae, 2008.

SEP (AT5G15800, 
AT3G02310, AT1G24260, 
AT2G03710) AP3

In AP3:GUS 35S:PI 35S:AP3 35S:AP1 mutants, AP3-GUS is expressed throughout 
the plant supporting the idea that full activation of the B-function genes requires tetra-
mer formation to include SEP.
The ectopic expression of SEP3 resulted in the induction of ectopic AP3 expression. 
Stronger 35S:SEP3 lines are also capable of activating AP3:GUS ectopically

Honma and Goto, 2001; Cas-
tillejo et al., 2005.

LFY --| EMF1 (AT5G11530) Ectopic LFY expression in emfl -1 mutants increases the severity of the emf phenotype. Chen et al., 1999.

EMF1 --| FT FT RNA levels are higher in the emf1-1 mutant and are detected earlier than in the 
wild type.

Moon et al., 2003.

AP1 --| FUL (AT5G60910) FRUITFULL is ectopically expressed in ap1 mutants. Mandel and Yanofski, 1995b; 
Ferrándiz et al., 2000a.

TFL1 --| FUL TFL1 has been postulated to be an inhibitor but it also is possible that other factors 
have this posttranscriptional inhibitory role. This interaction is necessary as when the 
negative posttranscriptional regulation of FUL by TFL1 is not considered, the nonfl oral 
gene steady states disappear. No experimental evidence.

Espinosa-Soto et al., 2004.

AP1 LFY In ap1 and ap1 cal double mutants, LFY expression is reduced.  Additionally, LFY is 
activated earlier in 35S:AP1 plants than in the wild type.

Bowman et al., 1993; Kempin 
et al., 1995; Weigel and Nilson, 
1995; Piñeiro and Coupland, 
1998; Liljegren et al., 1999.

EMF1 --| LFY Double mutants of the weak emf1-1 allele and lfy-1 bear lfy-like fl owers suggesting 
that, for this trait, lfy is epistatic. These genes have antagonistic activities.

Yang et al., 1995.

FUL LFY Even though LFY expression is similar in wild type and LFY:GUS ful-2 plants, there is 
less expression in ful ap1 cal triple mutants than in ap1 cal double mutants, suggest-
ing that the role of FUL in LFY upregulation is only important when AP1 is inactive.

Ferrándiz et al., 2000a.

TFL1 --| LFY In tfl 1 mutant plants LFY is ectopically expressed in the shoot apex. Weigel et al., 1992; Ratcliffe et 
al., 1999.

LFY PI (AT5G20240) Amount and domain of PI expression are reduced in lfy-6 mutants. There is no GUS
expression in early lfy PI:GUS fl owers.

Weigel and Meyerowitz, 1993; 
Honma and Goto, 2000.

PI PI AP3 and PI co-immunoprecipitate.
AP3 and PI mRNA levels are not maintained in ap3-3 pi-1 double mutants.
In AP3:GUS 35S:PI 35S:AP3 35S:AP1 mutants, AP3:GUS is expressed throughout 
the plant supporting the idea that full activation of the B-function genes requires PI

Jack et al., 1992; Goto and 
Meyerowitz, 1994; Honma and 
Goto, 2001.

LFY SEP Microarray experiments show that the group of LFY dependent genes includes the 
homeotic cofactors SEP1-3.

Schmid et al., 2003.

AP1 --| TFL1 In 35S:AP1, TFL1 expression is greatly diminished. TFL1 is ectopically expressed in 
ap1 cal double mutants.

Liljegren et al., 1999.

AP2 --| TFL1 The tfl 1-1 mutation partially suppresses the ap2-1 ap1-1 infl orescence phenotype. Schultz and Haughn, 1993; 
Shannon and Meeks-Wagner, 
1993.

EMF1 TFL1 In emf1-2 tfl 1 double mutants, the emf1-2 mutation is epistatic with respect to fl ower 
initiation. These genes do not have antagonistic activities. This suggests that EMF1
upregulates TFL1.

Chen et al., 1997.

LFY --| TFL1 The 35S:LFY plants resemble the tfl 1 mutant and have no TFL1 expression.
LFY can inhibit TFL1 at the transcriptional level. TFL1 is also ectopically expressed in 
lfy mutants.

Weigel and Nilsson, 1995; 
Liljegren et al., 1999; Ratcliffe et 
al., 1999.

AG --| WUS There is strong WUS expression in the center of ag fl oral meristem. Lenhard et al., 2001; Lohmann 
et al., 2001.
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INTERACTIONS EXPERIMENTAL EVIDENCE REFERENCE

SEP --| WUS SEP activity is required for WUS downregulation by AG because sep1 sep2 sep3 triple 
mutant plants bear indeterminate fl owers.

Pelaz et al., 2000.

WUS WUS No experimental evidence. Assumption of model. Espinosa-Soto et al., 2004;
Chaos et al., 2006

UPDATES (Chaos et al., 2006 and this chapter)

EMF1 --| AG In ChIP experiments, EMF1 is associated with sites in the promoter and second 
intron of AG.  EMF1 interferes with transcription by RNA polymerase II and T7 RNA 
polymerase in vitro.

Calonje et al., 2008.

AP3 --| AP1 AP1 transcript levels are signifi cantly higher in ap3-3 mutant plants than in both WT
and 35S:AP3.

Sundström et al., 2006.

PI --| AP1 ChIP shows that PI binds to target sequences in the AP1 promoter Sundström et al., 2006

MiR172 (AT2G28056, 
AT5G04275, AT3G11435) + 
HEN1 (AT4G20910) --| AP2

Elevated miR172 accumulation results in fl oral organ identity defects similar to those 
in loss-of-function ap2 mutants. On the other hand, the miR172 abundance depends 
on the activity of DICER-like protein HUA ENHANCER 1 (HEN1), which is expressed 
through the plant. This observation suggests that a cofactor expressed in the inner 
fl oral whorls is required to give specifi city to the HEN1-dependent repression of AP2.
The need for AG inactivity for AP2 function is added to the AP2 logical rules

Chen et al., 2002; Park et al., 
2002; Chen et al., 2004; Zhao et 
al., 2007.

LFY SEP1-3 Microarray experiments show that the group of LFY dependent genes includes the 
homeotic cofactors SEP1-3.

Schmid et al., 2003.

INTERACTIONS NOT INCLUDED IN THE MODEL

AGL24 (AT4G24540) + 
SVP (AT2G22540) --| AG

In the agl24 svp double mutant, AG mRNAs are detected in the infl orescence and 
fl oral meristems as early as stage 1, indicative of early AG expression. In later stages, 
AG is still expressed in all fl oral organs. Probably, this interaction is part of a different 
GRN that ocurs before the cell fate determination

Gregis et al., 2006.

BLR (AT5G02030) --| AG AG is expressed ectopically in blr mutants. BLR directly binds to AG cis elements 
(identifi ed by EMSA). This interaction is probably important in organogenesis.

Bao et al., 2004.

RBE (AT5G06070) --| AG In rbe mutants, there is ectopic expression of AG in second-whorl cells. This interac-
tion may be important in organogenesis.

Krizek et al., 2006.

SEU (AT1G43850) --| AG The direct in vivo association of SEUSS (SEU) with the AG cis-regulatory element was 
shown by ChIP. SEU interacts with LUG in a repressor complex to regulate AG, and 
LUG is already considered in the GRN model.

Sridhar et al., 2006.

AGL24+SVP --| AP3 An in situ analysis shows that in the agl24 svp double mutant, AP3 is expressed in all 
parts of the fl oral meristem and later in all fl oral organs. Probably, this interaction is 
part of a different GRN occurring before the cell fate determination.

Gregis et al., 2006.

LFY CAL(AT1G26310) Using posttranslational activation of LFY-GR, it is demonstrated that CAL is a direct 
LFY target. cis-regulatory elements in the putative CAL promoter are bound by LFY. 
AP1 forms heterodimers with CAL and AP1 is already included.

William et al., 2004.

AP3 --| FUL The domain of FUL expression is expanded to the third whorl in stage-3 ap3 mutants, 
but no direct interaction is detected by ChIP analysis.

Mandel and Yanofsky, 1995b; 
Sundström et al., 2006.

FT --| FUL FUL is expressed at higher levels in 35S:FT-VP16. It is not considered because this 
interaction could be mediated by TFL1 and LFY.

Teper-Bamnolker and Samach, 
2005.

PNY (AT5G02030) LFY The transcripts of LFY are substantially reduced in shoot apices of pny pnf double 
mutants after fl oral induction. pny pnf double mutants do not produce fl owers but, 
35S:LFY pny pnf plants do produce fl owers. This interaction is part of a different GRN.

Anrar et al., 2008.

PNF (AT2G27990) LFY

AP2 PI In situ hybridization shows there is less PI RNA occupying a smaller area in ap2-2
fl owers than in wild type. Probably an indirect effect.

Zhao et al., 2007.

AG --- SEP3 ChIP shows that AG interacts in vivo with predicted regulatory sequences of SEP3.
Insuffi cient experimental data.

Gómez-Mena et al., 2005.

FT SEP3 Overexpression of FT causes ectopic expression of SEP3 in leaves. No further experi-
mental evidence.

Teper-Bamnolker and Samach, 
2005.

Table 1. (continued)
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between cells are preserved because there is no displacement 
or sliding at middle lamellas that join neighboring cells (Priestley, 
1930 and Erickson, 1986; cited in Kwiatkowska, 2008). Therefore, 
overall plant growth could be modeled using the principles of 
solid body mechanics (see review in Kwiatkowska, 2008). How-
ever plant cells also grow anisotropically which implies a variation 
in the directional growth rates at a given point (Baskin, 2005). 
Hence, meristem growth has rather been modeled using the prin-
ciples of continuum mechanics, computing variables that char-
acterize plastic strain (Goodall and Green, 1986; for review see 
Green, 1999). 

Some quantitative mesoscopic models for fl ower develop-
ment and growth in Arabidopsis and other angiosperms have 
been put forward (e.g., Rolland-Lagan et al., 2003; Lee et al., 
2004; Skryabin et al., 2004; Mündermann et al., 2005). A fi nite 
element model of the SAM has also shown, for example, that lat-
eral bulging of the meristem surface leading to the formation of a 
primordium results in a gradient of shear stresses with high shear 
stress at the point where the future primordium emerges (Selker 
et al., 1992; reviewed in Kwiatkowska 2008). More recently, it was 
shown that cells in the Arabidopsis SAM orient their cortical mi-
crotubules along lines of mechanical stress generated during tis-
sue formation, and this then affects the mechanical properties of 
the cell, thus establishing a feedback loop (Hamant et al., 2008). 
This seems to be particularly relevant during the formation of the 
groove between the apical meristem and the primordium of lat-
eral organs, but less so during growth and differentiation, because 
the lateral organ primordia are not affected when the microtubular 
network is disintegrated by a drug (Hamant et al., 2008). This im-
plies that the mechanical feedback loop described is likely to act 
in parallel with the previously described auxin-mediated patterning 
mechanism (Laufs et al., 2009). Similar morphogenetic mecha-
nisms are likely to be at work in fl ower meristem and fl oral organ 
development, and both morphogenetic mechanisms connected to 
the functional regulatory modules, including FOS-GRN and others 
that have been partly elucidated and reviewed in this Chapter.

5. CONCLUSIONS AND PERSPECTIVES

Arabidopsis has been indispensable in unraveling the molecu-
lar genetic bases of the stereotypical and most conserved as-
pects of fl ower development. It has also been used to resolve 
some basic mechanisms of fl oral meristem determination, as 
well as fl oral organ cell differentiation and morphogenesis. The 
challenge ahead will be to understand how modules regulating 
each aspect of fl ower development are interconnected among 
themselves and with signal transduction pathways that respond 
to environmental and internal cues to yield coupled GRN spa-
tiotemporal dynamics during fl ower development. Such dynam-
ics likely involve feedback from physical or mechanical forces, 
structural and geometric characteristics of domains of activity 
and from cell dynamics (cell growth and division) in complex 
ways still requiring multiple theoretical multilevel models and 
coordinated experimental research. Different functional mod-
ules are now being characterized (Figure 24 and Table S1) and 
shown to regulate some of the main processes involved in fl ower 
development. Some of these modules or their components may 
participate in one or more fl ower developmental process and 
data on the functions and interactions of genes are becoming 
available to enable new dynamic computational models of GRN 
and signaling pathways during fl ower development (Figure 24 
and Table S1). 

Computational models for the gene regulatory module that 
underlies patterning of the infl orescence meristem and determi-
nation of the primordial cell types during early stages of fl ower 
organ specifi cation, have demonstrated the potential and need of 
theoretical dynamic approaches in understanding complex GRN 
underlying fl ower development. But information on each regula-
tory module and the interconnections between modules and with 
signal transduction pathways is still scanty.

It would be fascinating to unravel which molecular compo-
nents, circuits, or sub-networks underlie the development and 
evolution of the diversity of fl ower forms and the variations 

Table 2. Some of the contributions that have used the fl ower organ specifi cation GRN model in order to test, advance or discuss novel conceptual or 

methodological approaches. 

Contribution Reference

Logical analysis of the fl ower organ specifi cation (FOS) GRN. Mendoza et al., 1999

Introduction of the transsys formalism to represent GRN and implementation of FOS-GRN in this framework. Kim, 2001

Method for gene network inference based on nonlinear differential equations and logical approaches.  Perkins et al., 2004
Predictions were tested using FOS-GRN.

New method for automatically inferring gene regulation functions modeled as logical functions.  Bozek et al., 2006
The method is applied to FOS-GRN.

Automatic Petri-net-based method, applied to FOS-GRN, for fi nding stationary states.  Gambin et al., 2006

Analysis of the dynamic role of feedback loops in networks including FOS-GRN.  Kwon and Cho, 2007

Application of the GenYsis software to model the discrete and multiple valued FOS-GRN. Garg et al., 2007

Analysis of the effect of feedback loops on the robustness of Boolean networks, such as that of fl ower organ specifi cation.  Kwon and Cho, 2008

Dynamic study of FOS-GRN and other GRNs with the fi nding that these exhibit a property known as criticality.  Balleza et al., 2008

Formal analysis of the main sources of perturbation and their effects in biological regulatory networks, with the Demongeot et al., 2008
FOS-GRN as example.
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Figure 24. The main regulatory gene modules and hormone signaling pathways during fl ower developmental processes. 

 Four main developmental processes in fl owers shown schematically from FM formation to mature fl ower formation. 1) Specifi cation of the fl oral meristem 
anlagen. To initiate this process, FMI genes like LFY and AP1 are upregulated. However the position and polarity of these meristems are determined by 
other gene families and hormones like auxin (IAA) and gibberellins (GA). 2) Specifi cation of whorls of organ primordia. The ABC identity genes and SEP
are necessary and, together with other genes, suffi cient to specify fl oral organ primordial cells (FOS-GRN module). 3) Organ primordia cell proliferation, 
boundary establishment and organ polarity are regulated by additional modules that are presumably coordinated during fl oral organ primordia formation. 
4) Cellular differentiation and organ morphogenesis yield the fi nal shape, size and tissue composition of functional sepals, petals, stamens and carpels.
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around the overall conserved “theme” of fl oral structure among 
angiosperms. This will be possible with integrated multidisci-
plinary approaches addressing pending questions. For example, 
in order to understand how a fl ower meristem forms will require 
knowledge of the regulatory mechanisms underlying mechanore-
ception and cell wall, microfi bril and microtubule behaviour. How 
are such mechanisms interconnected or coordinated with the cell 
differentiation GRNs as well as with the morphogen-mediated 
patterning mechanisms? The challenge ahead consists in inte-
grating mesoscopic mechanical and morphogen-gradient models 
with experimentally grounded models of the GRNs underlying cell 
behaviour, dynamics and differentiation. The aim is to build multi-
level computational modeling frameworks that can be used to test 
the suffi ciency and necessity of contrasting mechanisms, which 
scale from the biochemical and GRN level to the physical factors 
constraining plant growth (Hogeweg, 2002). Ideally, joint efforts in 
modeling, bioinformatics and experimentation continually feeding 
back on each other should give a better understanding of fl ower, 
and more generally, plant development and evolution.

Notwithstanding the usefulness of Arabidopsis, such a grand 
challenge will surely benefi t or require comparative experimental 
and evolutionary studies of other angiosperms with divergent fl oral 
structures such as the monocots, other eudicots and basal angio-
sperms. Such an approach has been successful in understand-
ing and interpreting morphological traits of plants (Kaplan, 2001). 
Recently, studies in non-model monocots such as orchids (Tsai et 
al., 2004; Xu et al., 2006) and commelinids, (Ochiai et al., 2004), in 
maize and rice (Whipple et al., 2004; Xu and Kong, 2007), in mem-
bers of the Solanaceae, such as tomato (Hileman et al., 2006; de 
Martino et al., 2006), and in basal angiosperms (Soltis et al., 2007) 
among others, have started to demonstrate the power of coupling 
functional and evolutionary questions of a comparative approach 
with detailed molecular experimentation in several species. 

Findings from diverse groups of angiosperms, mostly com-
parative analyses of ABC gene expression data among diverse 
angiosperm groups (especially basal angiosperm taxa), with 
emphasis on the A and B class genes, have already been used 
to account for the underlying genetic differences in the diver-
sity of petal and stamen morphology among extant fl owering 
plants (Kim et al., 2005; Rudall, 2007). Figure 25 shows a dia-
grammatic and very simplifi ed angiosperm phylogeny and the 
variations observed in the domains of expression of the ABC 
class genes in selected species, representative of the morpho-
logical diversity present in their respective angiosperm lineages. 
Overall, these approaches are helping refi ne our knowledge of 
fl ower development, and will be instrumental in understanding 
the canonical GRN modules involved in fl ower formation and 
discovering variations. 
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Figure 25. Angiosperm phylogeny and schematic representation of ABC gene expression patterns of selected taxa. 

Schematic phylogeny based on APGII (2003) conventions with variations in the ABC model among angiosperm groups shown (see section 3.3). We 
present all rosids and asterids, but taxa comprising basal angiosperms, the magnoliid complex, monocots and core eudicots have been compacted and 
simplifi ed. Arabidopsis thaliana belongs to the order Brassicales (bold and underlined). In the ABC model, the A function for sepal specifi cation is main-
tained for all groups, although the class A genes involved in Arabidopsis are not functionally conserved for other taxa and may not be separable from fl oral 
meristem determination. The A function for all lineages was kept to enable comparison with Arabidopsis although a question mark was added to underline 
its dubious role. For B function, it should be noted that B class genes have undergone extensive duplications within different angiosperm lineages; while 
these duplications do not affect overall B function, on occasion they implicate subfunctionalization of the resulting paralogs (Irish and Litt, 2005; Soltis et 
al., 2007). For example, in species of Solanaceae such as tomato (de Martino et al., 2006) and petunia (Vandenbussche et al., 2004), and in the majority 
of eudicot taxa in which B function expression has been analyzed, two copies of the AP3 gene are found that have undergone subfunctionalization, AP3
and TM6. Specifi ed fl oral organs are indicated underneath each ABC model (Theissen and Melzer, 2007). Abbreviations: male organs (mo); female organs 
(fo); sepal-like tepals (sl); petal-like tepals (pl); staminodes (sd); stamens (st); carpels (ca); petaloid tepals (te); petals (pe); palea/lemma (pa); lodicules 
(lo); sepals (se); sepaloid petals (sp). Symbols used to refer to compacted plant lineages are: Basal tricolpates ( ), including orders Ranunculales and 
Proteales and families Buxaceae, Sabiaceae and Trochodendraceae; Asparagales ( ) including Dioscorales, Liliales and Pandanales; (a) the Commelinid 
grade that, in addition to Poales and Commelinales, includes Dasipogonaeae, Arecales and Zingiberales; the Magnoliid complex ( ) including Canella-
les, Piperales, Laurales and Magnoliales. Images of rice spikelet, Nymphaea alba and the male Gnetum gnemon reproductive structure were taken from 
Yale Virtual Centre for Cellular Expression Profi ling of Rice http://bioinformatics.med.yale.edu/riceatlas/anatomy.jspx; http://commons.wikimedia.org/wiki/
Image:Nymphaea_alba.jpg and http://commons.wikimedia.org/wiki/Image:Gnetum_gnemon_male.jpg respectively.
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